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Circadian Clocks: Mosquitoes Master the Dark Side

of the Room
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Aedes aegypti and Anopheles coluzzii mosquitoes exhibit diurnal and nocturnal behaviors, respectively. Baik
et al. reveal the clock network architecture underlying each species’ light preferences.

Animals adapt not only to take advantage
of specific resources, but within specific
contexts. In particular, the time of day an
animal is active affects what information
their brains can rely upon to find food and
mates, and to avoid predators. For
instance, nocturnal species may need to
rely heavily on auditory cues relative to
diurnal or crepuscular species. Even the
same stimulus can evoke different
responses in species active at different
times of day. Take mosquitoes, for
example: in particular, the diurnal Aedes
aegypti and the nocturnal Anopheles
coluzzii (formerly ‘An. gambiae molecular
form M’ [1]). Both species are
anthropophilic, vector-competent
dipterans from sub-Saharan Africa that
reproduce year-round and prefer to
oviposit in man-made water sources [2,3].
Ae. aegypti are active throughout the day
alongside their human hosts, whereas An.
coluzzii is nocturnal, targeting sleeping
hosts and generally only biting once [3,4].
What differences in neural circuitry might
promote divergent stimulus responses
between nocturnal and diurnal species?
What differences in neural circuitry might
promote an animal to be active
throughout the day versus only at night? A
new study by Baik and colleagues in this
issue of Current Biology [5] explores the
light preferences of diurnal Ae. aegypti
and nocturnal An. coluzzii, and how the
clock network within their brains may
regulate these preferences.

Baik et al. developed a chamber in
which a mosquito’s preference for a
shaded area, or an area lit with either
ultraviolet (~365 nm), blue (~450 nm), or
red (~630 nm) light, could be measured
throughout the day. Both species are
capable of perceiving these wavelengths

[6], but they display very different
behavioral phenotypes. For instance, Ae.
aegypti preferred unshaded areas
(regardless of the wavelength of light),
while An. coluzzii strongly avoided
ultraviolet-lit areas during the day.
Moreover, An. coluzzii would move to the
ultraviolet-lit areas of the chamber in
anticipation of presumptive nighttime.
Interestingly, males of both species had
an anticipatory shift in their preference for
ultraviolet light at the onset of dusk. This
sexual dimorphism may be a reflection of
mating pressures wherein males must be
the “first to the party’ so as to aggregate in
swarms, which the females will then
approach, enter, and exit in copula [7].
Daily changes in light preference in
Drosophila melanogaster are known to be
influenced by the circadian system [8,9],
but relatively little is known about the
mosquito clock network compared to
D. melanogaster. Whereas clock-gene
transcripts are known to cycle in Ae.
aegypti and An. coluzzii [10-12], daily
oscillations in clock-gene protein levels
and the clock-network architecture of
these mosquitoes have not been
explored. In D. melanogaster there are
~150 neurons that express the canonical
clock gene period (PER); together these
neurons support distinct aspects of the
animal’s rhythm [13,14]. As a first step
towards characterizing the clock
networks of these mosquitoes, Baik et al.
characterized the expression of PER and
the neuropeptide pigment dispersing
factor (PDF), a canonical clock transmitter
that is released by the ‘s-LN,s’ and the
‘I-LN,s’ clock-neuron clusters in
D. melanogaster [15]. Both mosquito
species possess PER*/PDF* neuron
clusters with similar projection patterns to
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the D. melanogaster s-LN,s and I-LN,s,
although with more cells per cluster.
Additionally, both Ae. aegypti and An.
coluzzii had species-specific clusters of
PER* neurons, suggesting each had
unique clock-network components.
Strikingly, several clock-neuron clusters
found in D. melanogaster are absent in
both mosquito species, with the
exception of 1-2 cells. Altogether, these
results suggest that the clock network of
mosquitoes and D. melanogaster share
some commonalities, yet also possess
some dramatic architectural differences.
Knowing the neurons likely involved,
Baik and colleagues then explored if
differences in the temporal expression
patterns of PER and PDF could explain
species-specific light preferences. First,
the authors determined the temporal
patterns of expression of PER and PDF
under normal light conditions, by
measuring immunofluorescence of each
factor at different times of day. This
analysis showed PER and PDF levels
were highest near dusk in the nocturnal
An. coluzzii, and near dawn in the diurnal
Ae. aegypti (Figure 1). These results
suggest that changes in PER and/or PDF
concentrations could underlie the
species-specific switches in light
preference. To explore the relationship
between PER expression and light
preference, Baik et al. exposed
mosquitoes to constant light to disrupt
clock-protein oscillations and in turn
disrupt any circadian regulation of light
preference. Under constant light, PER
and PDF expression were greatly reduced
in both species, to an extent that, in some
animals, PER expression was
undetectable. Moreover, under constant
light conditions, the normal shifts in light
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Figure 1. Anti-phasic oscillation of the circadian gene period (PER) in diurnal Ae. aegypti vs.

nocturnal An. coluzzii mosquitoes.

Cartoon schematic depicting the anti-phasic behavioral peaks of the diurnal Ae. aegypti and nocturnal An.
coluzzii mosquitoes which are accompanied by anti-phasic expression of the clock protein PER (blue

swath for Ae. aegypti and purple for An. coluzzii).

preferences of both species were
disrupted. Together, these results
suggest that the cycling of clock proteins
supports the species-specific light
preferences of Ae. aegypti and An.
coluzzii.

This study raises several interesting
questions about the diversity of clock-
network architectures. The mosquito
clock network is dominated by a large
number of s-LN,s and |-LN,s, and appears
to lack several circuit members found in
D. melanogaster. Do the individual s-LN,s
in mosquitoes support different phases of
activity throughout the day? Indeed, this is
the case in D. melanogaster, where a
single PDF™ s-LN, contributes to the
generation of the evening activity peak,
thus playing a role that is distinct from the
remaining PDF* s-LN,s, which support the
morning activity peak [16,17].
Alternatively, the ‘missing’ clusters of

clock neurons in mosquitoes may simply
not express PER, yet still contribute to the
circadian regulation of behavior as
downstream intermediaries of the s-LN,s.
Baik and colleagues also discovered
species-specific clusters of PER* neurons
within Ae. aegypti and An. coluzzii. Might
these species-specific PER* clusters
support the roles served by the clusters
absent from the mosquito clock networks,
but found in D. melanogaster?
Furthermore, what molecular and/or
circuit-based mechanisms might allow
PER cycling to be anti-phasic between the
two mosquito species? In

D. melanogaster, clock neurons have
asynchronous peaks of activity, wherein
the s-LN,s provide suppressive signals to
delay the activity of other clock neurons
[18]. It would be interesting to see if the
activity of the s-LN,s is anti-phasic across
the two mosquito species, and whether
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they also suppress the activity of the
species-specific clock neuron clusters
described in this study. Now that
transgenic approaches are available in
multiple mosquito species [19,20],
detailed circuit and molecular approaches
will enable future exploration of the
circadian regulation of many behaviors of
one of the most dangerous creatures on
Earth.
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Does sensory input flow into the brain as a stream, or does it come in waves? New research shows that tactile
information in the cortex rises and falls in phase with the forward and back motion of whiskers during surface

exploration.

Sailing back from a neuroscience retreat
on Catalina Island, the swell was up.
Peering ahead through the mist, a pier,
container ships, and staggered arrays of
giant cranes at the Port of Long Beach
came into view. But only for a moment. As
we slid down the swell’s surface, only the
most prominent features, the cranes,
remained observable above the next
crest. The port had not changed; our
ability to sense it had. While these cyclic
shifts in our visual perception were
imposed by nature’s waves, a new study
by Isett and Feldman [1], reported in this
issue of Current Biology, shows how body
and brain can interact to create similarly
fluctuating waves of tactile perception.
Like all animals, mice gather
information through senses evolved for
their natural environments. Sniffing for the
scent of food, friend, or foe, they scurry
through dark tunnels, tracking along walls
with an array of long facial whiskers.
These whiskers are peculiar, their bases
encircled with a dense set of nerves and
each resting within a muscular sling.
During exploration or running, these slings
are in constant motion, swinging each
whisker forward and back in synchrony,

like frantic rows of Roman oarsman
paddling towards battle. This ‘whisking’ is
cyclic, and the relative position within the
cycle of motion is called the phase, like
phases of the moon. But instead of
cycling once every 29%- days, whisking
cycles about 15 times a second.

This phasic motion provides an
attractive reference frame for models of
how sensory input from the whiskers is
transformed by the brain into knowledge
about the world. For example, several
models of object-location determination
use phase as a reference signal for
whisker position. During whisking in air,
the activity of neurons in primary
somatosensory cortex (S1) rises and falls
with the whisking phase [2]. Contact with
an object during whisking in air drives a
sharp impulse of activity in S1[3,4]. Phase
modulation has been hypothesized to be
combined with these touch signals in
various ways to produce neural codes of
object location [5-7]. However, recent
behavioral experiments suggest other
whisking features are more useful than
phase during object localization with
single whiskers [8]. Whether phase is, or is
not, used for object localization in space,
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similar neural mechanisms could be used
for identifying the location of object
features on a surface, like a pattern of
bumps on the tunnel wall that lets a
mouse know it is finally home.

To investigate how S1 activity could
identify the location of surface features,
Isset and Feldman [1] created a controlled
environment that mimicked mouse
habitat in several important ways. Mice
were allowed to run on a disc in a dark box
while their head was held steady. A round
drum of varying surface textures was
placed adjacent to the face and rotated in
closed-loop with mouse running, thus
creating a virtual tactile reality of running
down a tunnel. Neural activity from S1
was recorded with slender silicon probes
[9]. Whisker position and acceleration
resulting from the combination of
whisking with whiskers sticking to and
slipping past bumps on the surface were
tracked at high speed. Comparing these
two measurements allowed the
experimenters to determine how neural
activity in S1 was related to the phase of
whisking and these stick-slip events.

As mice ran in place and swept their
whiskers against the drum, S1 chattered
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