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Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory
modalities. J Neurophysiol 123: 24062425, 2020. First published May 13, 2020;
doi:10.1152/jn.00034.2020.—The serotonergic system has been widely studied
across animal taxa and different functional networks. This modulatory system is
therefore well positioned to compare the consequences of neuromodulation for
sensory processing across species and modalities at multiple levels of sensory
organization. Serotonergic neurons that innervate sensory networks often bidirec-
tionally exchange information with these networks but also receive input represen-
tative of motor events or motivational state. This convergence of information
supports serotonin’s capacity for contextualizing sensory information according to
the animal’s physiological state and external events. At the level of sensory
circuitry, serotonin can have variable effects due to differential projections across
specific sensory subregions, as well as differential serotonin receptor type expression
within those subregions. Functionally, this infrastructure may gate or filter sensory
inputs to emphasize specific stimulus features or select among different streams of
information. The near-ubiquitous presence of serotonin and other neuromodulators
within sensory regions, coupled with their strong effects on stimulus representation,
suggests that these signaling pathways should be considered integral components of
sensory systems.
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NEUROMODULATION OF SENSORY PROCESSING

A fundamental concept explored by work in motor systems,
such as the stomatogastric ganglion (STG) of decapod crusta-
ceans, is that modulatory signaling chemicals represent a
diverse tool set to alter network activity. Modulators can have
immediate, or latent, effects on the biophysical or synaptic
properties of a neuron across adjacent synapses and/or nonad-
jacent synapses, and these effects do not necessarily change the
membrane potential (Bargmann 2012; Katz 1999; Marder
2012). The diverse effects of neuromodulation allow neural
networks, even those with relatively few neurons, to produce a
wide range of different functional outputs. These core princi-
ples from early work in STG and motor systems have emerged
as essential features for every aspect of neural function, in-
cluding sensory processing.

Sensory systems internalize and process information from
the environment to form a neural representation of an animal’s
surroundings. However, all animals experience fluctuations in
their ecology and internal state. To appropriately adjust behav-
ior according to these fluctuations, neuromodulation endows
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the nervous system with the capacity to alter neural function at
every level (synaptic, circuit, network, etc.) without necessarily
adding new neurons. Neuromodulation supports effective sen-
sory processing in a variable environment, allowing tuning of
existing neural circuitry for flexible network output and con-
sequently dynamic behavioral output. The goal of this review
is to discuss fundamental features of neuromodulation of sen-
sory processing by one neuromodulator, serotonin. Sensory
neuromodulation by serotonergic neurons has been studied
extensively in diverse taxa and different sensory systems and
therefore offers an excellent opportunity to highlight common
principles. Although we focus on the influence of serotonin on
sensory processing, these common principles will hold true for
other neuromodulatory systems that have comparable effects at
cellular, circuit, and functional levels (McBurney-Lin et al.
2019; Schofield and Hurley 2018). It should be noted that this
review is by no means exhaustive, and we have limited our-
selves to the first few processing stages from the periphery in
most cases. We provide numerous examples across taxa and
sensory modalities that highlight several key aspects of the
serotonergic system. These aspects include the anatomical and
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physiological characteristics of serotonergic neurons, seroto-
nergic activity relative to context, and the pattern of serotonin
receptor expression within sensory circuitry. Ultimately, these
components of the serotonergic system enable serotonin to
modulate the neuronal representation of sensory events.

SEROTONIN SOURCES ACROSS SENSORY SYSTEMS

Serotonin is an ancient and pervasive signaling molecule
that acts in nearly every sensory system across diverse taxa
(Gaspar and Lillesaar 2012; Hay-Schmidt 2000; Peroutka and
Howell 1994). Concordantly, this single molecule has been
implicated in a variety of broad state descriptors such as
arousal, mood, and motivation (Cools et al. 2008; Luo et al.
2016; Miyazaki et al. 2012; Monti 2011). In general, there are
two major sources of serotonin in mammals: gut derived and
brain derived. The majority of the serotonin in the mammalian
body is produced in the gut, chiefly by enterochromaffin cells,
then absorbed by platelets and circulated throughout the pe-
riphery (reviewed in Bertrand and Bertrand 2010; Gershon
2013; Matthes and Bader 2018; Ni and Watts 2006). However,
gut-derived serotonin does not appear to cross the blood-brain
barrier (reviewed in Berger et al. 2009; El-Merahbi et al.
2015); therefore this review chiefly focuses on the conse-
quences of brain-derived serotonin on sensory system opera-
tions across taxa.

There are ~26,000 neurons in the mouse and rat brain that
produce serotonin (Table 1), but the majority of these sero-
toninergic neurons (~17,000 neurons) are collectively referred
to as the raphe nuclei (Ishimura et al. 1988; Steinbusch 1981;
Steinbusch and Nieuwenhuys 1981; Vertes and Crane 1997).
The raphe nuclei can be further divided into several subpopu-
lations, such as the dorsal raphe nucleus (DRN). In mice, the
DRN constitutes the majority of serotonergic neurons in the
brain (~9,000 serotonergic neurons; Ishimura et al. 1988; Ren
et al. 2018; also see Hornung 2010). These DRN neurons,
together with neurons from the median raphe nucleus (MRN),
innervate and modulate every sensory processing center
(Azmitia and Segal 1978; Doty 1983; Hurley et al. 2004; Jacob
and Nienborg 2018; Jacobs and Azmitia 1992; McLean and
Shipley 1987; Muzerelle et al. 2016; Takeuchi et al. 1982; Tork
1990).

Invertebrate brains contain far fewer neurons than vertebrate
brains. For instance, the central nervous system of Caenorhab-
ditis elegans has 302 neurons and Drosophila has ~135,000
neurons relative to ~70 million neurons estimated in mice
(Bates et al. 2019; Chiang et al. 2011; Cook et al. 2019;
Emmons 2015; Herculano-Houzel et al. 2006; Kohl and Jef-
feris 2011; Meinertzhagen 2018; Schlegel et al. 2017; White et
al. 1986; Zheng et al. 2018). Despite having orders of magni-
tude fewer neurons, invertebrate sensory systems must accom-
plish the same fundamental neural computations as those of
vertebrates. This notion extends to invertebrate serotonergic
modulatory networks, where there are typically far fewer
serotonergic neurons (Table 1) but many of the mechanisms for
how serotonin modulates sensory processing are conserved.
The Drosophila central brain, for instance, contains only ~90
serotonergic neurons (Vallés and White 1988), and only 2
widely projecting neurons (the “CSDns”) provide synaptic
serotonin to the primary olfactory center, the antennal lobe
(Dacks et al. 2006a; Roy et al. 2007). Despite having only 2
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serotonergic neurons, compared with >100 neurons that inner-
vate the vertebrate olfactory bulb from the DRN (Ren et al.
2018) and MRN (Muzerelle et al. 2016), serotonin modulates
similar aspects of olfactory encoding in these taxa (see below).
Thus, because vertebrate and invertebrate sensory systems
must solve similar problems, comparing across taxa can reveal
fundamental motifs of neuromodulation of sensory processing.

Although much of this review details the consequences of
synaptic release of serotonin, serotonergic neurons, like other
modulatory neurons, do not have to form a synapse with a
given cell to modulate the cell’s activity (Eid et al. 2013; Fuxe
et al. 2015). Serotonergic neurons have long been noted to use
volume or bulk transmission as a means to release serotonin
over large distances (sometimes >100 wm) and extended
epochs (on the order of seconds) (Agnati et al. 1995; Beaudet
and Descarries 1981; Bunin and Wightman 1998, 1999; Chazal
and Ralston 1987; Gaudry 2018; Hornung 2010). For instance,
in the cat auditory cortex most of the serotonergic boutons lack
conventional synapses (DeFelipe et al. 1991). This principle
extends across taxa, such as in the visual system of the house
fly, Calliphora. Here, serotonergic processes are separated
from other neurons by glia, lack synaptic specializations, and
are dense core vesicle rich (a hallmark of bulk transmission)
(Nissel et al. 1985). In addition, blood-borne serotonin con-
tributes to sensory processing. For instance, blood-borne sero-
tonin activates nociceptors (Sommer 2004; Viguier et al.
2013), is implicated in enhanced olfactory gain control (Suzuki
et al. 2020; Zhang and Gaudry 2016), and potentially activates
insect peripheral sensory structures. The CSDns in Drosophila
do not directly synapse onto the olfactory sensory neurons
(Coates et al. 2017), yet these neurons express the excitatory
5-HT2B receptor (Sizemore and Dacks 2016). In experiments
where the olfactory sensory neuron somata were removed for
performing antennal nerve shock, bath application of serotonin
did not directly affect activity measured at the axon terminals
of these neurons (Dacks et al. 2009). Therefore, the 5-HT2B
receptor may localize to olfactory afferent soma in the anten-
nae where serotonin in the hemolymph can act on them.
Indeed, there are serotonergic fibers in the periphery (Vallés
and White 1988), and the antennal hearts of many insects
constantly circulate hemolymph into these olfactory append-
ages (Miller 1950; Pass 2000; Zhukovskaya and Polyanovsky
2017). Endocrine release of serotonin could coordinate the
activity of olfactory afferents according to the animal’s current
needs or directly modulate the gain of olfactory afferents.
Alternatively, these mechanisms may operate as redundancies
for the similar effects of presynaptic serotonin on afferents in
other sensory systems (see below). Overall, bulk transmission
of serotonin, whether endocrine or paracrine, can modulate
sensory processing over a relatively large distance and over
potentially slower timescales.

HETEROGENEITY IN SEROTONERGIC NETWORKS

Animals constantly integrate information from different sen-
sory modalities under different internal physiological states
and ecological contexts. The nervous system therefore must be
able to independently modulate computations performed by
sensory networks, so that information pertinent to the animal’s
current state evokes the appropriate behavior. The serotonergic
system has the capacity to influence sensory processing within
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Table 1. Serotonergic neuron/perikarya estimates across taxa
Serotonergic
Order Species Neuron Estimates Method Reference
Anaspidea Aplysia californica 1207 e (Ono and McCaman 1984)
Arthrotardigrada Batillipes pennaki 10F e (Schulze et al. 2014)
Actinarctus doryphorus ocellatus 5t
Blattodea Periplaneta americana 125% a (Bishop and O’Shea 1983; Klemm et al. 1984)
Calanoida Calanus finmarchicus 24 a (Hartline and Christie 2010)
Decapoda Homarus americanus 100% o (Beltz and Kravitz 1983)
Hyas araneus (zoea 1) 55%§ a (Harzsch and Dawirs 1995)
Hyas araneus (zoea 2) 110*§
Diptera Calliphora erythrocephalus 182%§ a and B (Cantera and Nissel 1987; Nissel 1988)
Calliphora erythrocephalus (larvae) 97+ a and B (Cantera and Nissel 1987)
Drosophila melanogaster 106+ o' (Vallés and White 1988)
Drosophila melanogaster (larvae) 84+
Haplotaxida Allonais paraguayensis 2% a (Zattara and Bely 2015)
Amphichaeta sp. 2%
Chaetogaster sp. 0%
Dero digitata 4%
Dero furcata 6%
Monopylephorus rubroniveus 2%
Nais stolci 8%
Paranais litoralis 10%
Pristina aequiseta 2%
Pristina leidyi 2%
Stylaria lacustris 4%
Tubifex 6%
Hemiptera Rhodnius prolixus 150+ o' (Lange et al. 1988)
Triatoma infestans 286%§ a (Settembrini and Villar 2004)
Hirudinida Hirudo medicinalis 214% b% (Lent et al. 1991)
Hymenoptera Apis mellifera 75% a (Schiirmann and Klemm 1984)
Isopoda Armadillidium vulgare 807 o' (Thompson et al. 1994b)
Asellus meridianus 807
Ligia oceanica 80t
Oniscus asellus 60
Ixodida Amblyomma americanum 69t a (Hummel et al. 2007)
Dermacentor albipictus 767
Lepidoptera Helicoverpa armigera (larvae) 60+ el (Tang et al. 2019)
Manduca sexta 60% a (Homberg and Hildebrand 1989a, 1989b)
Odonata Epitheca sp. (nymph) 32§ el (Longley and Longley 1986)
Pachydiplax longipennis (nymph) 328
Opisthopora Lumbricus terrestris 1,729% o' (Sporhase-Eichmann et al. 1987a, 1987b)
Petromyzontiformes Petromyzon marinus 1,225 a (Antri et al. 2006)
Primates Homo sapiens 250,000 «a (Baker et al. 1990; Baker et al. 1991)
Rhabditida Caenorhabditis elegans 167 a and & (Desai et al. 1988; Duerr et al. 1999; Horvitz
et al. 1982; Loer and Kenyon 1993; Sze et
al. 2000)
Rodentia Mus musculus 25,824 B (Ishimura et al. 1988)
Rattus norvegicus 25,861 o (Vertes and Crane 1997)
Xiphosura Limulus polyphemus 158+ o' (Battelle et al. 1999)

Method(s) used in each reference: «, immunohistochemistry; B, peroxidase-antiperoxidase fluorescence; vy, glyoxylic acid-induced histochemistry; o,
formaldehyde-induced fluorescence. The following symbols indicate where certain numerical estimates correspond to: fcentral nervous system; fcentral brain;

*central brain without optic lobes; §ventral nerve cord/spine.

a wide swath of behavioral contexts in a complex and even
stimulus-specific manner. Individual DRN neurons are incred-
ibly diverse in terms of efferent projections, nonserotonin
transmitter content, intrinsic biophysical properties, sources of
input, and transcriptional profiles (reviewed in Okaty et al.
2019). Together, these heterogeneous features of serotonergic
neurons enable serotonin to have a nonuniform and complex
influence on sensory processing.

Anatomical Heterogeneity of Serotonergic Neurons

Serotonergic neurons have heterogeneous anatomical pro-
jections, which can reflect multiple functional domains within
specific sensory systems. For instance, serotonergic neurons do
not project uniformly throughout the insect visual system but

rather differentially innervate distinct layers within individual
visual neuropils (Hamanaka et al. 2012; Homberg and Hildeb-
rand 1989b; Nissel et al. 1987; Paulk et al. 2008; Schiirmann
and Klemm 1984; Vallés and White 1988). Additionally, in the
moth Manduca antennal lobe, the CSDns do not innervate the
regions occupied by olfactory afferents (Lizbinski et al. 2016;
Sun et al. 1993). This suggests that Manduca CSDns do not
directly act on olfactory afferents. In vertebrates, the olfactory
bulb is innervated by serotonergic processes from both the
MRN and DRN, but these processes are most dense in distinct
synaptic layers (Gracia-Llanes et al. 2010; McLean and Shi-
pley 1987; Muzerelle et al. 2016; Suzuki et al. 2015). Here,
processes from the MRN are most dense in the region occupied
mostly by periglomerular cells (a subclass of local interneu-
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ron), whereas processes from the DRN are densest in regions
occupied by mitral/tufted cells (output neurons) and granule
cells (another subclass of interneuron) (Muzerelle et al. 2016).
Similarly, the density of serotonergic innervation varies both
within and between rodent auditory nuclei, as is the case for
nuclei in the superior olivary complex and the inferior collicu-
lus (Hurley and Thompson 2001; Keesom et al. 2018; Thomp-
son et al. 1994a). Within the Drosophila antennal lobe, the
CSDns innervate glomeruli to varying degrees (Coates et al.
2017; Singh et al. 2013) and differentially connect with the
various principal antennal lobe neuron types from animal to
animal (Coates et al. 2017). Together, these examples illustrate
the heterogeneous nature of serotonergic innervation of sen-
sory networks. This heterogeneity allows distinct targeting of
processing layers or stimulus-specific subcircuits.

Cotransmission and Serotonergic Neurons

In addition to different projection fields, recent technological
innovations have revealed the molecular and anatomical diver-
sity of subsets of serotonergic neurons within the vertebrate
nuclei (Calizo et al. 2011; Fernandez et al. 2016; Huang et al.
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2019; Ren et al. 2019; Spaethling et al. 2014; Templin et al.
2012). For instance, subpopulations of serotonergic DRN neu-
rons with distinct trajectories coexpress either glutamate or
GABA (Huang et al. 2019; Liu et al. 2014; Ren et al. 2018;
Sengupta et al. 2017). Similarly, serotonergic DRN neurons
can express several neuropeptides and nitric oxide synthase (Fu
et al. 2010; Huang et al. 2019; Sengupta et al. 2017). In
Drosophila, the CSDns polysynaptically evoke excitation via
acetylcholine (Zhang and Gaudry 2016), although they may
not synthesize acetylcholine, as an intersectional approach
suggests that the CSDns may not express choline acetyltrans-
ferase (ChAT; Fig. 1A). Regardless, serotonergic neurons often
use these cotransmitters to impact sensory systems in different
ways. For example, when DRN projections to the olfactory
bulb are activated, DRN-derived serotonin and glutamate dif-
ferentially act on both output neuron subtypes (mitral and
tufted cells). In this instance, glutamate directly enhances the
odor-evoked responses in both output neuron subtypes,
whereas serotonin enhances decorrelation of only mitral cell
odor responses (Kapoor et al. 2016). Moreover, this enhance-
ment is increased by pharmacologically blocking serotonin
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Fig. 1. Serotonergic modulation of sensory processing. A: intersectional immunohistochemistry using a rabbit polyclonal antibody against serotonin (5-HT,
yellow; 1:5,000 dilution; ImmunoStar no. 20080) reveals that serotonergic Drosophila CSDns do not colabel with green fluorescent protein (GFP) expression
with a protein-trap transgenic LexA driver for choline acetyltransferase (ChAT, green; BDSC_60319). Neuropil (magenta) delineated with a rat monoclonal
antibody against N-cadherin (1:50 dilution; DSHB no. DN-Ex#8). No antibody was used to increase GFP signal. B: intersectional immunohistochemistry reveals
that Drosophila CSDns express the 5-HT1B receptor subtype. Here, a protein-trap transgenic GAL4 driver for the 5-HT1B receptor subtype driving the
expression of GFP (cyan; the 5-HT1B transgenics were a kind gift from Dr. Herman Dierick, Baylor College of Medicine) colabels with a goat polyclonal
antibody against serotonin (yellow; 1:5,000 dilution; ImmunoStar no. 20079). Neuropil (magenta) delineated with a mouse monoclonal antibody against
Bruchpilot (1:50 dilution; DSHB no. nc82). A rabbit polyclonal GFP antibody was used to increase GFP signal (1:1,000 dilution; ThermoFisher no. A-11122).
C: schematic illustrating general network targets of 5-HT (yellow) highlighted in this review including sensory afferents (purple), local interneurons (orange),
in particular presynaptic inhibition, and output neurons (blue). D: 5-HT can alter stimulus intensity coding by shifting the slope of the input-output relationship,
modulating response strength, or offsetting the threshold for activation. E: 5-HT can also alter the encoding of stimulus identity by altering tuning breadth or
by decreasing spontaneous activity to increase the signal-to-noise ratio. For both A and B, the same immunohistochemistry techniques described in Sizemore and
Dacks (2016) were used to collect data. Scale bars, 10 wm.
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receptors and nearly abolished when glutamate receptors are
similarly blocked (Kapoor et al. 2016). Although serotonin
may be acting through polysynaptic interactions in this partic-
ular case (Brill et al. 2016; Hardy et al. 2005; Liu et al. 2012),
the overall consequence is that cotransmission allows raphe
neurons to affect their targets on different timescales through
ionotropic and metabotropic receptors, respectively. This al-
lows raphe neurons to both quickly alter a given downstream
target’s neuronal activity and also leave that target’s activity
altered for extended epochs.

Molecular Heterogeneity of Serotonergic Neurons

In addition to the anatomical and transmitter diversity of
serotonergic neurons highlighted above, neurons within the
DRN are highly molecularly diverse. For instance, different
neurons within the DRN have different electrical properties
due to differential ion channel expression levels (Calizo et al.
2011; Templin et al. 2012). This suggests that two given DRN
neurons receiving identical synaptic input can still differen-
tially modulate the same sensory network. To the best of our
knowledge, ion channel expression profiles of serotonergic
neurons have not been compared in invertebrates. However,
the intrinsic properties and region-specific synaptic inputs for
the CSDns enable a single serotonergic neuron to perform
multiple operations across different regions of a given sensory
domain (Zhang et al. 2019). Altogether, these heterogeneous
features of individual and groups of serotonergic neurons
support serotonin’s capacity for nuanced modulation of sen-
sory processing.

THE CONTEXT FOR SEROTONIN RELEASE

Understanding how serotonin affects sensory processing has
been, and remains, a fruitful and career-long endeavor of many
investigators. Perhaps just as critical is to understand the
circumstances in which serotonin exerts these effects. Sero-
tonin release depends on both sensory and nonsensory input,
and thus corresponds to many aspects of external events,
self-generated behavioral patterns, and internal state.

Serotonergic Interactions with Sensory Systems Are
Bidirectional

In addition to modulating sensory circuitry, serotonergic
neurons often receive input from sensory systems, allowing
their influence to be tempered based on the sensory input that
the animal is experiencing. This may allow sensory networks
to adapt to varying stimulus regimes. For example, serotonin-
evoked changes in the signal-to-noise ratio might allow for
stable stimulus representation in the face of heterogeneous
environmental background (Hurley and Pollak 1999; Water-
house et al. 1986, 1990). Sensory input to serotonergic neurons
could also provide an opportunity for stimulus-specific modi-
fication of serotonin release. In some cases, primary sensory
afferents and serotonergic cells are one and the same, thus
allowing the sensory field to directly drive serotonin release.
This is the case for the chemo/mechanosensory ADF neuron in
C. elegans (Iwanir et al. 2016; Liu et al. 2019; Shao et al.
2019), select mechanosensory neurons in the antennae of
cockroaches (Watanabe et al. 2014), and potentially auditory
type II spiral ganglion afferents, as they express the serotonin
transporter (Nielsen et al. 2006; Vyas et al. 2019). In other
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instances, serotonergic neurons are completely constrained to a
sensory network, and therefore their activity is likely predom-
inantly driven by sensory processing. For instance, several
insect species have serotonergic neurons that make local pro-
jections within the optic lobes (Hamanaka et al. 2012;
Homberg and Hildebrand 1989b; Leitinger et al. 1999), and the
vertebrate retina possesses serotonergic amacrine cells (re-
viewed in Masson 2019) that contact retinal ganglion cells and
bipolar cells.

Sensory Stimulus-Driven Serotonin Release

In addition to projecting to sensory and nonsensory regions
(Gaudry 2018; Huang et al. 2019; Ren et al. 2019), many
serotonergic neurons also receive input from sensory systems.
In some cases, serotonergic neurons can receive sensory input
locally within the networks that they are directly modulating.
In Drosophila and moths, CSDn activity is influenced by odors
(Hill et al. 2002; Zhang et al. 2019; Zhang and Gaudry 2016;
Zhao and Berg 2009), via direct synaptic input from antennal
lobe principal neurons (Berck et al. 2016; Coates et al. 2017;
Sun et al. 1993; Zhang and Gaudry 2016). The organization of
local input can even vary across sensory networks for a single
neuron, as the CSDns can be excited and inhibited by a single
odor due to local synaptic inputs to different neuronal com-
partments (Zhang et al. 2019). The raphe nuclei also have
bidirectional connectivity, and in some cases sensory inputs
arrive from cells that are relatively proximal to sensory trans-
duction. Some retinal ganglion cells send collaterals to both the
visual system and the DRN, although whether these retinal
ganglion cells synapse directly onto serotonergic neurons re-
mains unclear (Pickard et al. 2015). Inputs to serotonergic
neurons in the DRN and MRN also originate from cortical and
subcortical sensory regions including the inferior and superior
colliculi or brain stem sensory nuclei (Ogawa et al. 2014;
Pollak Dorocic et al. 2014). Furthermore, there are neurons in
DRN and other raphe groups that respond to sensory stimuli
across several modalities (Fornal et al. 1996; Gao and Mason
2000; Moriya et al. 2019; Rasmussen et al. 1984, 1986).
Although the strongest sensory responses may occur in non-
serotonergic raphe neurons, sensory responsiveness has been
confirmed for serotonergic neurons themselves (Ranade and
Mainen 2009; Ren et al. 2018; Waterhouse et al. 2004) and
nonserotonergic DRN neurons may provide indirect sensory
input to serotonergic neurons. Moreover, some serotonergic
DRN neuron sensory responses are extremely short in latency,
suggesting input from relatively early stages of sensory pro-
cessing (Ranade and Mainen 2009). Thus, whether they are
intrinsic to a network or span several networks, by having
intimate access to the history of network activity serotonergic
neurons can update their modulatory influence based on the
stimulus regime or circuit state (Lizbinski and Dacks 2018).

Modality-Specific Serotonin Release

Variations in serotonergic neuron responses, as well as in
their efferent connectivity, make it difficult to predict the
conditions that elevate serotonin. Direct neurochemical analy-
ses within sensory regions during behaviorally important
events suggest that serotonin release within sensory regions is
modality specific. For instance, serotonin levels in the electro-
sensory lateral line lobe of weakly electric fish increase in
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response to a synthetic signal mimicking the presence of a
conspecific, yet strong auditory stimuli have no effect (Fotowat
et al. 2016). Likewise, in rat temporal and occipital cortices
that correspond to auditory and visually responsive regions
(respectively), serotonergic changes are modality specific.
Here, auditory input only evokes changes in the temporal
cortex, whereas visual input only evokes changes in the occip-
ital cortex (Miiller et al. 2007; Pum et al. 2008). Modality-
specific influence on serotonin levels can also occur across
several processing stages. For instance, auditory stimuli influ-
ence the levels of serotonin or its metabolites at multiple sites
in the auditory system, including the brain stem, midbrain, and
cortex (Cransac et al. 1998; Hall et al. 2010). In contrast,
exposing a rodent to a stressful odor, a component of fox urine,
does not influence serotonin in auditory regions (Hall et al.
2010). Together, these examples highlight the modality-spe-
cific nature of serotonin release.

Despite the canalization of serotonergic projections to sen-
sory regions suggested by these studies, some DRN neurons
that send projections into sensory regions also have projections
into nonsensory regions, suggesting coregulation of function-
ally related brain regions. For example, single DRN neurons in
the rat project to functionally related regions of sensory cortex
and cerebellum (Waterhouse et al. 1986) or to sensory and
motor areas related to whisker sensation and movement in the
cortex, thalamus, or medulla (Lee et al. 2008). Coregulation of
functionally related brain regions is also suggested by the
projections of defined subgroups of dorsal raphe neurons. For
example, block of serotonin release from select DRN neurons
increases the expression of aggressive behaviors in mice and
also alters nonsocial behaviors (Niederkofler et al. 2016).
These neurons not only project to some nodes of social behav-
ior networks but also provide prominent inputs to sites in the
auditory brain stem and midbrain. Although serotonin release
in response to multimodal stimuli has not been systematically
examined across sensory regions, these studies suggest that
DRN projections may be organized according to sensory mo-
dality.

Self-Regulation of Serotonin Release

In addition to the stimulus- and modality-dependent and
-independent means of adjusting serotonin release discussed
above, serotonin release can also be modified locally via
autoreceptors or heteroreceptors (reviewed in Andrade et al.
2015; Belmer and Maroteaux 2019). In several rodent species,
for instance, DRN and MRN neurons express inhibitory sero-
tonin receptors (5-HTRs) (Adell et al. 2001; Moret and Briley
1997; Pifieyro et al. 1996; Starkey and Skingle 1994). More-
over, the activity of these serotonin autoreceptors and hetero-
receptors is implicated in aggression (Nautiyal et al. 2015) and
mood disorders (Donaldson et al. 2014; Nautiyal et al. 2016;
Riad et al. 2017; You et al. 2016). At the cellular level, the
activity of these 5-HTRs along a given serotonergic neuron’s
terminals can provide the means for cell-autonomous regula-
tion of local serotonin release, without necessarily recruiting
additional neurons. A similar theme may occur in the sea
lamprey retina, where serotonergic amacrine cells in the retina
express the inhibitory 5-HT1A receptor (Cornide-Petronio et
al. 2015). In Drosophila, the CSDns express the inhibitory
5-HT1B receptor (Fig. 1B) and have several compartment-
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specific features, including synaptic connectivity (Zhang et al.
2019) and serotonin transporter expression (Kasture et al.
2019). Together these features of Drosophila CSDns provide
several potential means for differential influence across net-
works. The inhibitory influence of serotonin on serotonergic
neurons also appears to be mediated in an activity-independent
and nonexocytotic manner (Mlinar et al. 2015), suggesting that
the serotonergic network may self-regulate in a manner distinct
from the context in which it affects other neurons.

Serotonergic Neurons Respond to Behavioral State and
Context

In addition to sensory stimulus-driven responses, serotoner-
gic neurons respond to complex stimuli, behavioral output,
reward contingencies, and internal state. Much like the heter-
ogeneous characteristics noted earlier (see above), raphe neu-
rons as a population are markedly diverse in the stimuli to
which they respond. In mammals, the activity of DRN neurons
varies greatly in their responses to both behavioral outputs
(Fornal et al. 1996; Heym et al. 1982; Jacobs et al. 2002;
Jacobs and Fornal 1991) and more subtle stimulus qualities like
reward contingencies based on recent experience. Subpopula-
tions of DRN serotonergic neurons respond to reward, punish-
ment, or learned predictors (Cohen et al. 2015; Li et al. 2016;
Liu et al. 2014; Luo et al. 2016; Matias et al. 2017; Miyazaki
et al. 2011a, 2011b, 2012; Stark and Scheich 1997). Further-
more, different stimulus features such as salience or valence
can be encoded as bursts of spikes or changes in DRN tonic
firing rate (Cohen et al. 2015). This heterogeneity likely re-
flects subpopulations of DRN neurons that support different
behavioral functions. Frontal cortex- and olfactory bulb-pro-
jecting DRN neurons and amygdala-projecting DRN neurons
differ in the brain regions from which they receive input.
Moreover, the former are activated by reward and inhibited by
punishment, whereas the latter are excited by both (Ren et al.
2018). Furthermore, the activation of raphe neurons is depen-
dent upon environmental context. Serotonergic DRN neuron
activity decreases with onset of movement in assays with low
perceived threat but increases under high-threat conditions
(Seo et al. 2019). Similarly, confinement within a small area, a
mild stressor, increases serotonergic activity in the mouse
auditory midbrain (Hall et al. 2010).

Social context can also influence serotonin release. Interac-
tions with conspecifics increases serotonin release in the mouse
auditory midbrain, in correlation with nonvocal behaviors such
as social investigation or overall activity of the subjects, rather
than the number of vocalizations produced (Hall et al. 2011;
Hanson and Hurley 2014; Keesom and Hurley 2016). In male
mice interacting with female partners, serotonergic activity
correlates with female vocalizations that may indicate rejec-
tion, but this is a negative correlation (Keesom and Hurley
2016). Additionally, serotonin-auditory interactions are sensi-
tive to prior experience. For example, the dynamics of sero-
tonin release during some types of social interaction are also
slower for individuals housed in isolation in early life (Keesom
et al. 2017). These results suggest that serotonergic signaling is
tied to the salience and valence of individual social interactions
rather than being positively correlated with the sensory stimuli
associated with that interaction. Finally, serotonergic neurons
across taxa are also regulated by physiological contexts that
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vary over relatively long timescales including hunger (Voigt
and Fink 2015) and circadian rhythm (Cagampang and Inouye
1994; Corthell et al. 2013; Jacobs et al. 1981; Kloppenburg et
al. 1999; Monti 2011; Trulson and Jacobs 1979). Thus, sero-
tonergic neurons are influenced by both the animal’s environ-
ment and broad behavioral states, both of which alter distinct
aspects of temporal firing patterns.

In summary, the contexts for serotonin release are multidi-
mensional and include both stimulus-dependent and -indepen-
dent conditions. Anatomical and functional studies suggest that
serotonergic neurons are sensitive to sensory events but are
also influenced by factors such as internal state, motor activity,
and the salience of stimuli with regard to prior events. From all
this, it is reasonable to conclude that serotonin is capable of
conveying information into sensory systems on the external
context and internal state in which sensory events occur.

RECEPTOR BASIS OF COMMON MODULATORY EFFECTS

While serotonin clearly affects fundamental aspects of sen-
sory processing, there are several paths by which these overall
circuit outcomes can be achieved. Just as serotonergic neurons
are themselves diverse, there is a diversity of serotonin recep-
tors (5-HTRs) that vary in their affinity for serotonin, time
course of action, and the secondary messenger system to which
they couple (Nichols and Nichols 2008). This receptor diver-
sity allows serotonin to differentially target neuronal popula-
tions that support distinct sensory computations across modal-
ities (Fig. 10).

Comparing Serotonin Receptors across Taxa

An array of 5-HTRs are encoded in nearly every animal
genome (Azmitia 2007; Ishita et al. 2020; Moroz et al. 2014;
Peroutka and Howell 1994; Ribeiro et al. 2005; Vleugels et al.
2015). The first S-HTR emerged ~700—-800 million years ago
(Peroutka and Howell 1994), and there are seven major 5-HTR
families in vertebrates (5-HT1-7) and at least three across the
invertebrates (5-HT1, 2, and 7) (Table 2). However, there are
notable clade-specific exceptions such as the MOD-1 iono-
tropic 5-HTR in C. elegans (Ranganathan et al. 2000), the
5-HTS receptor in Pieris rapae (Qi et al. 2014), the 5-HT4 and
6 receptors in some mollusks (Kim et al. 2019; Nagakura et al.
2010; Tamvacakis et al. 2015, 2018), the nonfunctional
5-HT5B receptor subtype in humans (Grailhe et al. 2001), the
absence of these receptors in the Ctenophora genome (Moroz
et al. 2014), and the 5-HT4 receptor in Apostichopus japonicus
(Wang et al. 2017). Invertebrate 5-HTRs are typically named
for the vertebrate 5-HTR family with which they share the
most sequence homology, but the pharmacological properties
of these counterparts can differ. Methysergide, for example,
acts as a broad-spectrum 5-HTR antagonist in vertebrates but
agonizes or has no effect on select invertebrate 5-HTRs
(Blenau et al. 2017; Dacks et al. 2013; Roser et al. 2012). There
are 14 subtypes of vertebrate 5-HTRs (e.g., within the 5-HT2
family there are 5-HT2A-C), some of which can have several
isoforms as a result of posttranscriptional modifications to the
nascent 5-HTR transcript (Bockaert et al. 2006; Burns et al.
1997; Hannon and Hoyer 2008; Tanaka and Watanabe 2020;
Vleugels et al. 2015). Conversely, invertebrate 5-HTR sub-
types are generally encoded at distinct genomic loci, and each
5-HTR has a single predicted isoform (e.g., Drosophila
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5-HTRs: Colas et al. 1995; Gasque et al. 2013; Saudou et al.
1992; Witz et al. 1990). Of these different 5-HTR subtypes,
several (if not all) are expressed in olfactory, auditory, mecha-
nosensory, visual, and gustatory centers of both vertebrates and
invertebrates (Table 3). Moreover, reoccurring themes have
begun to emerge wherein serotonin acts through these diverse
receptors within these sensory modalities to modulate funda-
mental computations including breadth of responsive range,
detection thresholds, and discriminating between stimuli.

Serotonergic Modulation of Sensory Computations: Gain
Control

Sensory systems employ several strategies to dynamically
adjust the range of individual stimulus features that they
encode. Given the ubiquity of serotonergic systems, it is not
surprising that serotonin either modulates or plays a direct role
in these processes. For instance, animals experience fluctua-
tions in stimulus intensity as they navigate the world. In cases
where the animal experiences intense sensory input (i.e., bright
lighting, high odor concentration, etc.), the neurons may fail to
properly encode the given stimulus as a result of saturation.
Conversely, animals may fail to detect ecologically important
stimuli (i.e., the scent of a predator) if they are present at low
intensities. To overcome these hurdles, sensory systems typi-
cally use a suite of computations, such as “gain control”
(reviewed in Carandini and Heeger 2012), to adaptively adjust
the sensory input-to-output ratio of a network (Fig. 1D). Across
modalities, 5-HTRs expressed by sensory afferents can enable
direct serotonergic modulation of the gain of sensory input. For
instance, chronic activation of nociceptive afferents in Dro-
sophila larvae induces direct serotonergic inhibitory feedback
mediated by 5-HT1B receptor that causes desensitization of
afferents over the course of development (Kaneko et al. 2017).
Additionally, although the receptor basis remains unknown,
serotonin decreases sensory afferent activity in proprioceptor
and mechanosensory networks (Gaudry and Kristan 2009;
Nagata et al. 2019). Conversely, serotonin can activate excit-
atory 5-HTRs in photoreceptors to directly increase their ex-
citability (Cheng and Frye 2020; Han et al. 2007; Pootanakit et
al. 1999), therefore increasing the sensitivity of these sensory
afferents.

Serotonergic Modulation of Sensory Computations:
Sharpening and Broadening

In addition to directly acting on sensory afferents to modu-
late gain control, serotonin can indirectly modulate sensory
afferents via local interneurons (LNs). For example, serotonin
stimulates 5-HT2C-expressing LNs (juxtaglomerular cells) in
the olfactory bulb to increase the amount of presynaptic inhi-
bition exerted upon olfactory afferents (Petzold et al. 2009). In
doing so, serotonin reduces the gain of olfactory afferent
responses and thus the amount of sensory input entering the
olfactory bulb (Petzold et al. 2009). Moreover, serotonin can
also indirectly enhance presynaptic inhibition by activating
5-HT2A receptors expressed by excitatory LNs (external tufted
cells), which in turn provide excitatory drive to inhibitory short
axon and periglomerular cells (Brill et al. 2016; Liu et al.
2012). In this way, serotonin can further drive inhibitory inputs
to sensory afferents as a means of decreasing sensory input.
Serotonin similarly indirectly decreases the strength of sensory

J Neurophysiol - doi:10.1152/jn.00034.2020 - www.jn.org

Downloaded from journals.physiology.org/journal/jn (193.160.247.043) on November 3, 2025.



SEROTONIN SENSORY MODULATION

2413

Table 2. Serotonergic receptors that have been molecular cloned and their intracellular effects assayed across members of various taxa

Order Species Receptor Subtype Response Reference
Anaspideae Aplysia californica 5-HT,, Decrease cAMP (Angers et al. 1998)
5-HT,,, Decrease cAMP (Barbas et al. 2002)
Aplysia kurodai 5-HT paci Increase cAMP (Lee et al. 2009)
Basommatophora Lymnaea stagnalis 5-HT2 Increase 1P (Gerhardt et al. 1996)
Blattodea Periplaneta 5-HT1 Decrease cAMP (Troppmann et al. 2010)
americana
Coleoptera Tribolium castaneum 5-HT1 Decrease cAMP (Vleugels et al. 2013)
5-HT7 Increase cAMP (Vleugels et al. 2014)
Decapoda Panulirus interruptus 5-HT1A Decrease cAMP (Spitzer et al. 2008a)
5-HT2B Increase 1P, (Clark et al. 2004)
Procambarus clarkii 5-HT1A Decrease cAMP (Spitzer et al. 2008b)
5-HT2B Increase 1P,
Diptera Aedes aegypti 5-HT7 Increase cAMP (Lee and Pietrantonio 2003; Pietrantonio
et al. 2001)
Anopheles gambiae 5-HT2 (“AGAP002229”) Increase Ca®" (Ngai et al. 2019)
5-HT2 (“AGAP002232) Increase Ca?*
Calliphora vicina 5-HT7 Increase cAMP (Roser et al. 2012)
5-HT2A Increase Ca>*
Drosophila 5-HT1A and 1B Decrease cAMP (Saudou et al. 1992)
melanogaster 5-HT2A Increase Ca®" (Colas et al. 1995; Gasque et al. 2013)
5-HT2B Increase Ca>* (Gasque et al. 2013)
5-HT7 Increase cAMP (Witz et al. 1990)
Hymenoptera Apis mellifera 5-HT2A and 2B Increase Ca®" (Thamm et al. 2013)
5-HT7 Increase cAMP (Schlenstedt et al. 2006)
Ixodida Boophilus microplus 5-HT1 Decrease cAMP (Chen et al. 2004)
Lepetellida Haliotis discus hannai 5-HT1B Decrease cAMP (Kim et al. 2019)
5-HT4 Increase cAMP
Lepidoptera Bombyx mori 5-HT1A Decrease cAMP (Xiong et al. 2019)
Manduca sexta 5-HT2 Increase 1P (Dacks et al. 2013)
5-HT7 Increase cAMP
Pieris rapae 5-HT1A and 1B Decrease cAMP (Qi et al. 2017)
5-HT7 Increase cAMP
5-HT8 Increase Ca>* (Qi et al. 2014)
Primates Homo sapiens 5-HT1A, 1B, 1D, 1E, IF Decrease cAMP (Adham et al. 1993; Hamblin et al. 1992;
McAllister et al. 1992; Stam et al.
1992; Stam et al. 1994; Weinshank et
al. 1992)
5-HT2A, 2B, 2C Increase 1P, (Kursar et al. 1994; Schmuck et al. 1994,
Stam et al. 1992; Stam et al. 1994)
5-HT4 Increase cAMP (Blondel et al. 1998)
5-HT5A Inconclusive (Grailhe et al. 2001)
5-HT6 Increase cAMP (Kohen et al. 1996)
5-HT7 Increase cAMP (Stam et al. 1997)
Rhabditidae Caenorhabditis SER-1 Increase Ca?* (Hamdan et al. 1999)
elegans SER-4 Decrease cAMP (Olde and McCombie 1997)
SER-7 Increase cAMP (Hobson et al. 2006)
Rodentia Mus musculus 5-HT1A, 1B, 1D, 1IF Decrease cAMP (Amlaiky et al. 1992; Charest et al. 1993;
Maroteaux et al. 1992; Weydert et al.
1992; Yu et al. 1991)
5-HT2A, 2B, 2C Increase 1P (Foguet et al. 1992; Loric et al. 1992)
5-HT4 Increase cAMP (Claeysen et al. 1999)
5-HT5A and 5B Inconclusive (Matthes et al. 1993)
5-HT6 Increase cAMP (Kohen et al. 2001)
5-HT7 Increase cAMP (Plassat et al. 1993)
Rattus norvegicus 5-HT1A, 1B, 1D, 1F Decrease cAMP (Adham et al. 1993; Albert et al. 1990;
Hamblin et al. 1992; Lovenberg et al.
1993)
5-HT2A, 2B, 2C Increase (Julius et al. 1988; Kursar et al. 1994;
Ca®"/IP, Pritchett et al. 1988)
5-HT4 Increase cAMP (Gerald et al. 1995)
5-HT5A Decrease cAMP (Erlander et al. 1993; Thomas et al.
2000)
5-HT5B Inconclusive (Erlander et al. 1993; Wisden et al. 1993)
5-HT6 Increase cAMP (Ruat et al. 1993a)
5-HT7 Increase cAMP (Ruat et al. 1993b; Shen et al. 1993)
Synallactida Apostichopus 5-HT4 Increase cAMP (Wang et al. 2017)
Jjaponicus

“Response” indicates the in vitro consequences of receptor activation. IP;, inositol trisphosphate.
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Table 3. Serotonin receptor subtype expression within auditory, mechanosensory, gustatory, olfactory, and visual processing centers

across vertebrates and invertebrates

Sensory System Order Receptor Subtype Method Reference
Audition/mechanosensation Anaspidea 5-HT7 In situ hybridization (Lee et al. 2009)
Araneae 5-HT1 In situ hybridization (Sukumar et al. 2018)
Diptera All subtypes Transgenics (Howard et al. 2019)
Decapoda 5-HT1 Immunohistochemistry (Fickbohm et al. 2005)
Rodentia 5-HTI1A, 1C, 2 In situ hybridization (Wright et al. 1995)
5-HT2A, 2C Immunohistochemistry (Li et al. 2003)
5-HT4A Immunohistochemistry (Suwa et al. 2014)
5-HT1B, 1D, IF In situ hybridization (Bruinvels et al. 1994)
5-HT2A Immunohistochemistry (Cornea-Hébert et al. 1999)
5-HT2A Immunohistochemistry (Basura et al. 2008)
5-HT2B Immunohistochemistry (Tadros et al. 2007)
5-HT2 Autoradiography (Malgouris et al. 1993)
5-HT1A In situ hybridization and (Chalmers and Watson 1991)
autoradiography
5-HT1A In situ hybridization (Pompeiano et al. 1992)
5-HT7 Autoradiography (To et al. 1995)
5-HT1A. 1B Immunohistochemistry (Peruzzi and Dut 2004)
Gustation Blattodea 5-HT1 Immunohistochemistry (Troppmann et al. 2010)
Decapoda 5-HT1, 2 Immunohistochemistry (Vazquez-Acevedo et al. 2009)
5-HT1 Immunohistochemistry (Spitzer et al. 2005)
Diptera 5-HT1A Transgenics (Luo et al. 2012)
5-HT1A, 1B, 2A, 7 Transgenics (Huser et al. 2017)
5-HT1B Transgenics (Liu et al. 2015)
Hymenoptera 5-HT7 In situ hybridization (Schlenstedt et al. 2006)
Orthoptera 5-HT1A, 1B Immunohistochemistry (Shao et al. 2010)
Rhabditida 5-HT7 Transgenics (Hobson et al. 2006)
Rodentia 5-HT2A Immunohistochemistry (Cornea-Hébert et al. 1999)
5-HT4A Immunohistochemistry (Suwa et al. 2014)
5-HT2 Autoradiography (Malgouris et al. 1993)
Olfaction Decapoda 5-HT1 Immunohistochemistry (Spitzer et al. 2005)
5-HT2 Immunohistochemistry (Vazquez-Acevedo et al. 2009)
Diptera All subtypes Transgenics (Sizemore and Dacks 2016)
5-HTI1A, 1B, 2A, 7 Transgenics (Huser et al. 2017)
Hymenoptera 5-HT7 In situ hybridization (Schlenstedt et al. 2006)
5-HT1A Immunohistochemistry (Thamm et al. 2010)
Lepidoptera 5-HT1 Immunohistochemistry (Dacks et al. 2013)
Orthoptera 5-HT1A, 1B Immunohistochemistry (Shao et al. 2010)
Rhabditida SER-5 (5-HT6-like) Transgenics (Harris et al. 2010)
Rodentia 5-HT2 Autoradiography (Pazos and Palacios 1985)
5-HT3 In situ hybridization (Tecott et al. 1993)
5-HT1A, 1C, 2 In situ hybridization (Wright et al. 1995)
5-HTIE Immunohistochemistry (Klein and Teitler 2012)
5-HT4A Immunohistochemistry (Suwa et al. 2014)
5-HTI1C In situ hybridization (Mengod et al. 1990)
5-HT2A Immunohistochemistry (Cornea-Hébert et al. 1999)
5-HTIB In situ hybridization (Voigt et al. 1991)
5-HT2A Immunohistochemistry (Hamada et al. 1998)
5-HT1B, 1D, IF In situ hybridization (Bruinvels et al. 1994)
5-HT2 Autoradiography (Malgouris et al. 1993)
5-HT2A. 2C Immunohistochemistry (Li et al. 2003)
Vision Carnivora 5-HT1 Autoradiography (Mower 1991)
5-HT1 Autoradiography (Skangiel-Kramska and Kossut 1992)
5-HTIA, 1C, 2,3 Autoradiography (Dyck and Cynader 1993)
Cypriniformes 5-HTIA, 1B In situ hybridization (Norton et al. 2008)
Decapoda 5-HT1, 2 Immunohistochemistry (Vazquez-Acevedo et al. 2009)
5-HT1 Immunohistochemistry (Spitzer et al. 2005)
Diptera All subtypes Transgenics (Sampson et al. 2019) (preprint)
Hymenoptera 5-HT1A Immunohistochemistry (Thamm et al. 2010)
5-HT7 In situ hybridization (Schlenstedt et al. 2006)
Lagomorpha 5-HTI1A, 7 In situ hybridization (Chidlow et al. 1998)
Orthoptera 5-HT1A, 1B Immunohistochemistry (Shao et al. 2010)
Petromyzontiformes 5-HT1A In situ hybridization (Cornide-Petronio et al. 2015)
Primates 5-HTI, 2 Autoradiography (Rakic et al. 1988)
5-HTI, 2 Autoradiography (Rakic and Lidow 1995)
5-HTI1A, 2 Autoradiography (Impieri et al. 2019)
5-HT1B, 2A In situ hybridization (Watakabe et al. 2009)
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Sensory System Order Receptor Subtype Method Reference

Rodentia 5-HTI1A, 1C, 2 In situ hybridization (Wright et al. 1995)
5-HT1A Immunohistochemistry (Zhou et al. 2019)
5-HT2A, 2C Immunohistochemistry (Li et al. 2003)
5-HT4A Immunohistochemistry (Suwa et al. 2014)
5-HT2A Immunohistochemistry (Cornea-Hébert et al. 1999)
5-HT1B, 1D, IF In situ hybridization (Bruinvels et al. 1994)
5-HT1F In situ hybridization (Adham et al. 1993)

afferent input in the Drosophila antennal lobe by enhancing
presynaptic inhibition (Dacks et al. 2009; Gaudry 2018) and
the strength of projection neuron (PN) responses by enhancing
postsynaptic inhibition (Suzuki et al. 2020). Altogether, these
examples highlight the different mechanisms by which sero-
tonin regulates the resolution with which sensory networks
encode stimulus intensity.

In addition to compensating for large variations in stimulus
intensity, animals may also need to adjust their ability to
resolve different stimuli. At the neuronal level, sensory sys-
tems use inhibition and lateral excitation to sharpen or broaden
the resolution with which they encode stimulus identity (re-
viewed in Martin et al. 2011). Not surprisingly, serotonin also
targets these aspects of sensory encoding (Fig. 1E). Such is the
case in the inferior colliculus, where serotonin sharpens audi-
tory neurons’ responses to primary sound frequencies by de-
creasing their responsiveness to frequencies both within and
outside of the central range (Hurley and Pollak 2001). In the
piriform cortex, serotonin sharpens neuronal representations of
odors by decreasing their spontaneous activity but leaving their
odor-evoked responses unaffected (Lottem et al. 2016).

In these instances, serotonin hones the neurons’ responses,
whether by narrowing the receptive range or by decreasing
spontaneous activity. However, serotonin can also broaden the
receptive range of neurons in a given sensory system. For
instance, in the vertebrate retina serotonin can decrease lateral
inhibition by activating inhibitory 5-HTRs expressed by ama-
crine cells, therefore broadening the number of retinal ganglion
cells that are responsive to a given stimulus (Trakhtenberg et
al. 2017; Zhou et al. 2019). In the olfactory bulb, serotonin
enhances feedforward excitation to mitral cells from interneu-
rons via the 5-HT2A receptor (Brill et al. 2016; Huang et al.
2017; Liu et al. 2012). The combined actions of both serotonin
and glutamate released by DRN neurons increase the sensitiv-
ity of tufted cells and decorrelate odor-evoked responses of
mitral cells, presumably increasing the separation of represen-
tations of different odors (Kapoor et al. 2016). Within the
Drosophila antennal lobe, serotonin could potentially affect the
breadth of odor-evoked representations, as a specialized pop-
ulation of excitatory interneurons can broaden odor-tuning
(Huang et al. 2010; Shang et al. 2007; Yaksi and Wilson 2010)
and these neurons express excitatory 5S-HTRs (Sizemore and
Dacks 2016). Serotonin can also directly modulate the excit-
ability of second-order neurons within a sensory system, thus
potentially influencing tuning breadth. Exogenous application
of serotonin increases the excitability of antennal lobe output
neurons (Dacks et al. 2006b; Kloppenburg et al. 1999; Klop-
penburg and Hildebrand 1995; Zhang and Gaudry 2016). This
effect, however, is at least partially polysynaptic and depends
on the method of delivery, as activation of Drosophila CSDns

can have little to no effect on the odor-evoked responses of
output neurons depending on the glomerulus (Zhang and
Gaudry 2016). This discrepancy could arise from cell class-
specific receptor expression in the antennal lobe (AL)
(Sizemore and Dacks 2016), differences in binding affinities of
the 5-HTRs for serotonin (Gasque et al. 2013), or differences
in the time course of receptor activation and inactivation.
Regardless, there appear to be a variety of means by which
serotonin can affect the resolution with which stimulus identity
is encoded.

Serotonergic Regulation between Sensory Information
Streams

By its combined action on different neural types within a
sensory circuit, serotonin can functionally regulate the balance
among different streams of information within sensory regions.
For example, in the superficial layers of the superior colliculus,
serotonin acting via 5S-HT1A receptors decreases the responses
of single postsynaptic neurons to stimulation of both ascending
and descending visual pathways (Mooney et al. 1996). In
contrast, activation of 5-HT1B receptors largely decreases
responses to stimulation of the ascending visual pathway,
likely by decreasing transmitter release presynaptically. En-
dogenous serotonin release could therefore favor descending over
ascending visual streams via these two inhibitory serotonin recep-
tor types. In the dorsal cochlear nucleus (DCN), the high density
of serotonergic fibers in cell groups that receive descending and
multisensory input is proposed to regulate the convergence of
multimodal information at the level of the principal cells (fusiform
cells) in this nucleus (Klepper and Herbert 1991). As in the
superior colliculus, serotonin acts on multiple types of excit-
atory and inhibitory DCN neurons through different classes of
receptors (Tang and Trussell 2015, 2017). Serotonin postsyn-
aptically increases the excitability of fusiform neurons through
5-HT2A and 5-HT7 receptors. At the same time, serotonin
presynaptically decreases the amplitude of excitatory potentials
from auditory nerve fibers through 5-HT1A receptors and
increases the excitability of inhibitory interneurons through
5-HT2 receptors. This causes responses of the principal neu-
rons of the DCN to stimulation of auditory-only pathways to be
dampened, whereas responses to stimulation of multisensory
pathways are enhanced. In multiple sensory cortices, serotonin
also has neuron-specific, receptor-specific, or layer-specific
effects (Foehring et al. 2002; Garcia-Oscos et al. 2015; Jang et
al. 2012; Lee et al. 2018; Torres-Escalante et al. 2004; Xiang
and Prince 2003). These selective effects may alter the balance
between different sources of information such as inter- and
intracolumnar inputs or intralayer versus feedforward sources
of input (Cervantes-Ramirez et al. 2019; Xiang and Prince
2003).
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Serotonergic Metamodulation across Sensory Systems

In addition to acting on fast synaptic transmission within a
given sensory system, serotonin can also act on other modu-
latory neurons that influence sensory processing. Indeed, all
sensory systems are influenced by multiple neuromodulators
released from intrinsic or extrinsic neurons (Berg et al. 2009;
Carlsson et al. 2010; Chalasani et al. 2010; Hurley et al. 2004;
Iwano and Kanzaki 2005; Jacob and Nienborg 2018; Lizbinski
et al. 2018; Nissel 2018; Nissel and Zandawala 2019; Scho-
field and Hurley 2018). Neuromodulators released by a given
modulatory neuron can also influence other modulatory neu-
rons within the network. Collective changes in concentration
over time of each neuromodulatory molecule reflect the overall
“modulatory tone” of any given sensory network. These
changes in modulatory tone might therefore reflect dramatic
shifts in the animal’s behavior state as it relates to a given
sensory experience. Individual modulators, such as serotonin,
can therefore profoundly alter networkwide activity by simply
adjusting existing modulatory circuitry present in a given
sensory network.

Serotonin influences GABAergic modulation in both verte-
brate and invertebrate primary olfactory systems (reviewed in
Lizbinski and Dacks 2018), and peptidergic modulation by
serotonin is likely present across taxa. For instance, interneu-
rons of the vertebrate sensory cortex that release vasoactive
intestinal peptide (VIP) also express the excitatory 5-HT3
ionotropic receptor (Cardin 2018; Lee et al. 2010; Rudy et al.
2011). Activating 5-HT3 receptors in VIP interneurons causes
a hyperpolarization in 5-HT3-negative inhibitory interneurons,
which subsequently disinhibits pyramidal neurons (Jiang et al.
2015; Pfeffer et al. 2013; Takesian et al. 2018). Moreover,
serotonergic stimulation of VIP interneurons also produces a
latent, GABAy receptor-mediated hyperpolarization in these
same pyramidal cells (Takesian et al. 2018). Therefore, by
acting through these interneurons serotonin can have a large
impact on network dynamics and even modulate distinct as-
pects of sensory processing (for example see Pi et al. 2013).
Moreover, the activity of the VIP interneurons appears to be at
least one determinant for the changes observed in the activity
of visual cortex circuitry according to the animal’s ongoing
behavioral state (Batista-Brito et al. 2017; Bennett et al. 2013;
Fu et al. 2014; Pakan et al. 2016; Polack et al. 2013). Collec-
tively, these results suggest that there may be a serotonin-
induced contingency switching module in visual cortex
wherein the animal’s locomotor activity induces serotonergic
activation of VIP interneurons. Then, perhaps after some epoch
after behavior initiation, negative feedback terminates this
serotonin-induced module.

CONCLUDING REMARKS

Here we have presented numerous examples of serotonin’s
capacity for adjusting sensory processing at nearly every stage
of signaling. Regardless of modality or species, serotonergic
systems are heterogeneous at the level of individual neurons, as
well as diverse at the level of whole populations. Moreover, the
suite of serotonin receptors further expands the means with
which serotonin affects select features, such as odor coding.
These heterogeneous features of the serotonin system allow for
widespread, nuanced effects of serotonin on sensory process-
ing that vary in a context-dependent manner. Subsequently,
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these heterogeneous features also complicate assignments of a
singular role for serotonin. However, serotonergic modulation
is widespread throughout the animal kingdom, and currently
the majority of our understanding regarding the cellular mech-
anisms underlying serotonergic modulation of sensory process-
ing comes from a handful of organisms (i.e., rodents, fruit flies,
etc.). By comparing across modalities and diverse taxa, we can
reveal convergent adaptations that reveal fundamental molec-
ular, cellular, and network mechanisms of sensory modulation.
Similar approaches might also reveal divergent adaptations that
reveal the selective pressures that sculpt neuromodulation.

Future directions for understanding the role of serotonin in

sensory processing include the following:

e How does the full extent of serotonergic neuron diversity
vary from animal to animal, and what factors contribute to
this variation?

e How do the properties of serotonergic neurons and ex-
pression patterns of 5-HTRs change in response to differ-
ent external and/or internal demands?

e How much of the context-dependent effects of serotonin
arises from the heterogeneous nature of serotonergic neu-
rons, and how much arises from different 5-HTR expres-
sion motifs?

e How does 5S-HTR autoreceptor and heteroreceptor activity
influence serotonergic modulation of sensory processing?

e To what extent are 5-HTRs expressed in specific neuronal
compartments, and what are the consequences of 5-HTR
distribution patterns for sensory processing?
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