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ABSTRACT

The Receptor Basis of Serotonergic Modulation in an Olfactory Network

Tyler R. Sizemore

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the
capacity to alter neural function at every level (synaptic, circuit, network, etc.) without
necessarily adding new neurons. Through the actions of neuromodulators, the existing
neural circuitry can be adaptively tuned to achieve flexible network output and similarly
dynamic behavioral output. However, despite their near ubiquity in all sensory modalities,
the mechanisms underlying neuromodulation of sensory processing remain poorly
understood. In this dissertation, | address three main questions regarding the
mechanisms of one modulator (serotonin) within one sensory modality (olfaction). | begin
by establishing a “functional atlas” of which principal neuron types express which of the
five serotonin receptors in the highly-tractable Drosophila primary olfactory center, the
antennal lobe. Later, | use this “functional atlas” to determine how the activity of one
serotonin receptor shapes the activity of a specialized neuropeptidergic signaling
pathway. However, before | can address how the activity of this serotonin receptor adjusts
the activity of this neuropeptidergic pathway, | demonstrate how this neuropeptidergic
pathway shapes olfactory processing. Altogether, my work establishes several key

insights that expand our understanding of neuromodulation of sensory processing.
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CHAPTER 1

Introduction



(portions of this chapter are based on my publication Sizemore, T.R., Hurley, L.M., and
Dacks, A.M. (2020). Serotonergic modulation across sensory modalities. Journal of

Neurophysiology, 123, 6.)

INTRODUCTION

Every animal’s ability to interpret and properly traverse its ecology depends
on information from the environment being internalized and processed by the animal’s
sensory modalities. These sensory systems translate complex stimulus information in
serial and parallel to form a neural-/biochemical-code capable of specifying stimulus
identity, intensity/concentration, and valence. However, all animals experience
fluctuations in their ecology and internal state, and therefore require operational flexibility
in sensory processing so that the proper behavioral response(s) are initiated. One way in
which nervous systems contextualizes neural processing according to such fluxes in
external and internal demands is through neuromodulation. Neuromodulation is a nearly
ubiquitous process that endows the nervous system with the capacity to alter neural
function at every level (synaptic, circuit, network, etc.) without necessarily adding new
neurons (Kupfermann, 1979, 1980; Getting, 1989; Harris-Warrick and Marder, 1991;
Katz, 1999; Hokfelt et al., 2000). Through the actions of neuromodulators, the existing
neural circuitry can be adaptively tuned to achieve flexible network output and similarly
dynamic behavioral output (Daur et al., 2016; Kim et al., 2017). However, our current
understanding of neuromodulatory mechanisms largely comes from seminal and ongoing
work in motor systems such as the stomatogastric ganglion of decapod crustaceans.
Consequently, the mechanisms underlying neuromodulation of sensory processing has
classically been underexplored. Therefore, in this dissertation, | leverage the unparalleled
genetic access and numerically-reduced central brain of the fruit fly (Drosophila
melanogaster) to determine critical aspects that underlie the actions of one
neuromodulator, serotonin.

In this dissertation, | address three main questions regarding the mechanisms of
serotonergic modulation of one sensory modality, olfaction. Olfaction is an optimal

modality to serve as a platform for determining a given neuromodulator's mechanisms



given the extensive knowledge of each principal neuron’s developmental origin,
neurotransmitter content, anatomy, and physiology (Chou et al., 2010; Wilson, 2013;
Sakuma et al., 2014; Kim et al., 2017; Lee, 2017; Bates et al., 2020; Schmidt and Benton,
2020; Schlegel et al., 2021). | will begin by establishing a “functional atlas” of which
principal neuron types express which of the five serotonin receptors in the Drosophila
primary olfactory center, the antennal lobe (Chapter 2). Later, | use this “functional atlas”
to determine how the activity of one serotonin receptor shapes the activity of a specialized
neuropeptidergic signaling pathway (Chapter 4). However, before | can address how the
activity of this serotonin receptor adjusts the activity of this neuropeptidergic pathway, |
determine how this neuropeptidergic pathway shapes olfactory processing (Chapter 3).
Altogether, my work establishes several key insights that expand our understanding of
neuromodulation of sensory processing.

In this introductory chapter, | introduce the fundamental concepts behind the later
chapters of this dissertation (Chapters 2-4). | first describe signaling molecules that have
neuromodulatory actions and some the mechanisms underlying those actions. Then, |
detail the principal neurons that constitute my chosen platform for studying
neuromodulation of sensory processing, the Drosophila olfactory system. This leads into
our discussion of two of the neuromodulators present within this network, serotonin and
the neuropeptide myoinhibitory peptide, and their influence on olfactory processing. Then,
| end the chapter by discussing the consequences of one neuromodulator modulating
another, a process termed “metamodulation”. Occasionally, | describe and contrast
across modalities and/or taxa so as to illustrate important correspondences/unique
solutions nervous systems use to solve similar computational problems. This emphasis
towards “comparative thinking” (i.e., presenting these concepts as they relate to any
nervous system/sensory modality) is especially important as our goal as neuroscientists
is not to understand how a single brain type operates, but instead how any and all brains

operate.

A. NEUROMODULATION: MECHANISMS AND SIGNALING FACTORS

A fundamental concept explored by work in motor systems, such as the



stomatogastric ganglion (STG) of decapod crustaceans, is that modulatory substances
represent a diverse tool set to alter network activity. Neuromodulatory substances include
— but are not limited to - the amines (e.g., serotonin), neuropeptides (e.g., myoinhibitory
peptide), gaseous transmitters, and other substances that act on individual
neurons/synapses through intracellular receptors or G-protein coupled receptors
(GPCRs) (Bargmann, 2012; Marder, 2012; Taghert and Nitabach, 2012).
Neuromodulators can have immediate, and/or latent, effects on the biophysical or
synaptic properties of a neuron across adjacent synapses, and/or non-adjacent
synapses, and these effects do not necessarily change the membrane potential (Levitan,
1988; Katz, 1999; Marder, 2012; Bargmann and Marder, 2013; Bucher and Marder, 2013;
Nadim and Bucher, 2014). Modulators can alter neuronal excitability by adjusting the
neuron’s voltage- and time-dependent channel conductances [e.g., (Prinz et al., 2004)].
Modulators can also change synapse strength/quantal content, typically by acting on
potassium and/or calcium conductances (Hochner and Kandel, 1992; Braha et al., 1993).
However, because modulators can alter the neuronal excitability and/or synapse strength,
the modulator’s effect(s) are dependent on the neuron’s or synapse’s recent activity. For
example, depending on the recent history of network activity of the Tritonia escape
response circuit, release of the neuromodulator serotonin (5-HT) will either cause a short-
term potentiation or a long-term depotentiation on the targeted neuron (Sakurai and Katz,
2003, 2009). This particular example also demonstrates how neuromodulation can cause
state changes in neurons and synapses. We can also observe similar phenomena in the
rat hippocampus, where glial-derived glutamate acts on AMPA receptors along CA3
pyramidal neuron axons to potentiate/extend transmitter release (Sasaki et al., 2011).
Here glutamate, a signaling molecule best known for its actions as a neurotransmitter,
acts as a neuromodulator by potentiating the pyramidal neurons via extending the
potassium channel inactivation epoch (Sasaki et al., 2011). This example also illustrates
another key point: neuromodulators are not necessarily distinct substances from
neurotransmitters. In fact, many modulators have non-modulatory effects on a given
target neuron, such as GABA’s effect on local interneurons in the Drosophila primary
olfactory center (Wilson and Laurent, 2005; Lizbinski and Dacks, 2018). Moreover, the

same signaling molecule released from the same presynaptic partner can have



modulatory and non-modulatory effects on the
same downstream partner. Again, in the Tritonia
escape response circuit, 5-HT from the dorsal swim
interneurons (DSI) has both modulatory and non-
modulatory effects on the postsynaptic dorsal
flexion neurons (DFN) (Katz and Frost, 1995).
Altogether, these diverse and nuanced effects of
neuromodulation allow neural networks, even
those with relatively few neurons, to produce a wide
range of different functional outputs. Ultimately, by
expanding the computational capacity of any neural
network in this way, neuromodulators acting within
sensory networks can endow the animal with
tremendous behavioral flexibility [e.g., (Tsuda et

al., 2021)].

B. THE DROSOPHILA OLFACTORY SYSTEM

Bi. Neuroanatomical Architecture and

Signaling Factors

The organization of the Drosophila olfactory
system shares many core features to those of other
invertebrates and vertebrates (Hildebrand and
Shepherd, 1997; Strausfeld and Hildebrand, 1999;
Eisthen, 2002; Ache and Young, 2005; Bargmann,

Figure 1. The Drosophila melanogaster
olfactory network principal neuron types
and the sole source of synaptic 5-HT within
the antennal lobe, the CSDns.

(A) Olfaction for the fly begins when odorant
molecules bind to and activate olfactory
receptors expressed by olfactory sensory
neurons (OSNs; cyan). The axon terminals of
OSNs that express similar olfactory receptors
terminate in similar olfactory channels
("glomeruli”) within the animal’'s primary
olfactory center, the antennal lobe (AL). Within
each glomerulus, OSNs form excitatory
synapses with other principal neuron types:
projection neurons (PNs; green and orange)
and local interneurons (LNs; magenta).
Olfactory information is adjusted within and
between different glomeruli by these LNs before
being carried to higher-order structures (the
mushroom body calyx, “MB Calyx”; and, lateral
horn, “LH") by PN axons.

(B) In addition to OSNs, PNs, and LNs, the
Drosophila AL is widely-innervated by a single
pair of 5-HTergic neurons, the CSDns. An
individual CSDn ramifies throughout the entire
olfactory network, and therefore all olfactory
regions (e.g., the AL, LH, etc.) are innervated by
both CSDns.

Arrowheads indicate CSDn innervation within
the AL. Scale bar=10um.

2006; Hansson and Stensmyr, 2011; Martin et al., 2011; Wilson, 2013). As with other
insects, olfaction for the fly begins when odorants from the external environment enter
small pores found along the ~1,000 sensillae on the fly’s 3"d-antennal segment and ~60
sensillae on the maxillary palp (Stocker et al., 1983; Venkatesh and Singh, 1984; Stocker,
1994; Shanbhag et al., 1999; Vosshall, 2000; Grabe et al., 2016) (Figure 1A). Here, the



odorant molecules diffuse, bind to, and activate their cognate chemosensory receptor(s)
expressed along the dendrites of the 1-4 cholinergic olfactory sensory neurons (OSNs)
housed within each sensillum (Stocker et al., 1990; Carlson, 1996; De Bruyne et al., 1999;
Vosshall, 2000; Vosshall et al., 2000; Missbach et al., 2014). The chemosensory
receptors expressed by the ~1,200 OSNs can belong to one of three distinct gene
families: odorant receptors (ORs; ~62 members), ionotropic receptors (IRs; ~60
members), or gustatory receptors (GRs; ~68 members) (Stocker et al., 1990; Benton et
al., 2009; Su et al., 2009; Joseph and Carlson, 2015; Grabe et al., 2016). Olfactory
sensory neurons are rapidly activated upon odorant binding, in part due to the fact that
chemosensory receptors form a ligand-gated heteromultimer ion channel in association
to their obligate co-receptor (Neuhaus et al., 2005; Butterwick et al., 2018). Upon
activation, OSN signals are relayed to the fly’s central brain into the primary olfactory
center, the antennal lobe (AL), where the axons of ~10-65 OSNs that express the
same/similar chemosensory receptor(s) converge on one or few of the ~51 glomeruli
(Couto et al., 2005; Fishilevich and Vosshall, 2005; Benton et al., 2009; Grabe et al.,
2016; Bates et al., 2020; Task et al., 2020). Within a glomerulus, OSN axons form
excitatory connections with the other two principal neuron types of the AL: second-order
relay neurons (projection neurons; PNs) and local processing neurons (local
interneurons; LNs).

The cell bodies of PNs - the insect analog of mitral and tufted cells of the vertebrate
olfactory bulb - form several distinct clusters defined by their development origins and
their location relative to the AL (Yu et al., 2010; Sakuma et al., 2014, Lee, 2017). There
are ~345 PNs in the Drosophila AL that are divided into the anterodorsal (adPNs), lateral
(latPNs), ventrolateral (vIPNs), and ventral (vPNs) cell clusters (Sakuma et al., 2014;
Bates et al.,, 2020). Neurons from the anterodorsal and lateral cell clusters tend to
innervate a single glomerulus (uniglomerular; uPNs - ~164 PNs), while neurons from the
ventrolateral and ventral clusters generally innervate multiple glomeruli (multiglomerular;
mPNs - ~181 PNs) (Lai et al., 2008; Lin et al., 2012; Bates et al., 2020; Schlegel et al.,
2021). Neurons of these subtypes can be further divided based on transmitter identity;
uPNs and mPNs generally express acetylcholine and GABA, respectively (Yasuyama et
al., 2003; Wilson et al., 2004; Okada et al., 2009). Even further still, axons from the



excitatory uPNs and inhibitory mPNs generally travel through distinct fascicles in the brain
before terminating in the mushroom body (MB) and/or the lateral horn (LH), where the
odor encountered is contextualized based on learned and innate associations,
respectively (Heisenberg, 2003; Strutz et al., 2014; Schultzhaus et al., 2017; Cognigni et
al., 2018; Amin and Lin, 2019; Das Chakraborty and Sachse, 2021). However, before PN
axons relay their signals to the MB and/or LH, the signal is adjusted within- and between-
glomeruli by several diverse classes of LNs.

There are ~200 diverse LNs in the Drosophila AL, which interconnect and adjust
network activity based on the ongoing activity across glomeruli and the animal’'s current
needs (Wilson and Laurent, 2005; Olsen et al., 2007; Root et al., 2008; Ignell et al., 2009;
Okada et al., 2009; Chou et al., 2010; Yaksi and Wilson, 2010; Seki et al., 2010; Das et
al., 2011; Ko et al., 2015; Schlegel et al., 2021). From developmental origins, transmitter
identity, neuroanatomy, and physiology, AL LNs are highly heterogeneous. Antennal lobe
LNs can be divided into two major cell clusters based on their soma location and the
neuroblast they derive from: the lateral and ventral cell clusters (Stocker et al., 1997; Das
et al., 2008, 2011; Lai et al., 2008; Chou et al., 2010; Sen et al., 2014). The majority of
LNs (~125) are lateral LNs (latLNs) that are mostly GABAergic LNs (Wilson and Laurent,
2005; Okada et al., 2009; Tanaka et al., 2009; Chou et al., 2010). In addition to GABAergic
latLNs, there are also latLNs that are cholinergic (~8-15 LNs), electrically-coupled, and
release the inhibitory neuropeptides tachykinin (TKK; ~15-20 LNs) and myoinhibitory
peptide (MIP; ~10 LNs) (Shang et al., 2007; Ignell et al., 2009; Carlsson et al., 2010; Chou
et al., 2010; Huang et al., 2010; Seki et al., 2010; Yaksi and Wilson, 2010). The ~65
ventral LNs (VLNs) are glutamatergic, which has inhibitory actions on AL neurons (Das et
al., 2011; Liu and Wilson, 2013), a stark contrast to glutamate’s general role in vertebrate
systems. Approximately two tyrosine hydroxylase-immunoreactive LNs are in both the
latLN and VLN cell clusters, suggesting there are >4 dopaminergic LNs in the Drosophila
AL, but dopamine’s actions in the AL remain untested (Chou et al., 2010). Additionally,
different subgroups of AL LNs display distinct morphological characteristics (Chou et al.,
2010). Furthermore, these distinct morphological subtypes tend to act on different aspects
of network processing - not unlike interneurons in vertebrate networks (Shipley and Ennis,
1996; Markram et al., 2004; Chou et al., 2010; Nagayama et al., 2014; Lizbinski and



Dacks, 2018). The names for these distinct morphological classes derive from how much
of the AL the given LN innervates or the LN’s neurite morphology, and are:
‘panglomerular”, “multiglomerular”, “few glomeruli”, “continuous”, and “patchy” (Chou et
al., 2010). Further still, nearly half of all AL LNs innervate both the ipsilateral and
contralateral AL, and therefore have the potential to process and adjust olfactory
information in serial (Chou et al., 2010). Altogether, the diversity of transmitter identity
and anatomical features of AL LNs is — at least in part — what enables complex and
nuanced processing of olfactory stimuli.

In addition to these principal neuron types, the Drosophila AL also receives broad
input from two contralaterally projecting, serotonin-immunoreactive deutocerebral
neurons (CSDns) (Figure 1B) (Dacks et al., 2006; Roy et al., 2007). The CSDns
represent the sole source of 5-HT within the Drosophila AL and are highly conserved
across other insects (Salecker and Distler, 1990; Sun et al., 1993; Wegerhoff, 1999; Hill
et al., 2002; Dacks et al., 2006; Zhang and Gaudry, 2016; Coates et al., 2017). Moreover,
the Drosophila and moth CSDns are odor-responsive (Hill et al., 2002; Zhang and
Gaudry, 2016; Coates et al., 2017; Zhang et al., 2019a) and receive direct synaptic input
from AL principal neurons (Sun et al., 1993; Berck et al., 2016; Zhang and Gaudry, 2016;
Coates et al., 2017, 2020). A single Drosophila CSDn projects spans the entire olfactory
network (both ALs, both MB calyces, and both LHs), and less well-defined areas which
integrate inputs from many modalities (the superior lateral protocerebrum and both
antlers) (Roy et al., 2007; Coates et al., 2017, 2020; Suver et al., 2019; Musso et al.,
2021; Pacheco et al., 2021). The CSDns’ actions in these different regions, as discussed
below, appears to vary in these different regions due to compartment-specific inputs and
variable synaptic density across glomeruli (Coates et al., 2017, 2020; Zhang et al.,
2019a). Although the active zone density does vary across AL glomeruli, all glomeruli
have CSDn active zones (Coates et al., 2017) and serotonin receptors are widely
expressed across AL principal neuron types (Sizemore and Dacks, 2016). Together,
these results suggest nearly all AL neurons are subject to — or, at least indirectly impacted

by - serotonergic modulation.



Bii. Functional Architecture with Emphasis on Interneuron Computations

Olfactory sensory neuron spiking activity nearly completely depends on the odor-
tuning properties of their constituent chemosensory receptor(s) (De Bruyne et al., 2001;
Hallem et al., 2004; Larsson et al., 2004; Hallem and Carlson, 2006; Nagel and Wilson,
2011). Structural differences and ligand binding affinity variability across these constituent
chemosensory receptors also confer unique patterns of spontaneous activity across
OSNs (De Bruyne et al., 1999; Hallem et al., 2004; Olsen et al., 2007; Nagel and Wilson,
2011; Saberi et al., 2016). However, the odor-tuning properties across different OSNs are
statistically correlated (Haddad et al., 2010); a feature that has, until recently, complicated
experimental dissection of the behavioral contributions of different OSNs (Bell and
Wilson, 2016). This feature is, in part, why even a monomolecular odorant can drive
activity in a multitude of OSNs (Hallem and Carlson, 2006; Benton et al., 2009; Su et al.,
2009; Haddad et al., 2010). In addition to these features of OSN responses conferred by
OR properties, there is also a linear relationship between odor concentration and the
number of ORs activated. That is, exposure to high odor concentrations enables
nonselective binding at the OR binding site, ultimately enabling the given odor to produce
aresponse in OSNs it would not under other circumstances (De Bruyne et al., 1999, 2001;
Ng et al., 2002; Hallem and Carlson, 2006; Silbering et al., 2008; Semmelhack and Wang,
2009; Saberi et al., 2016). Interestingly, some odorants drive inhibition in OSNs simply
through local ion sequestration by neighboring OSNs activated by the odorant, a
phenomenon termed “ephaptic coupling” (Su et al., 2012; Zhang et al., 2019b). Olfactory
sensory neuron activity is terribly “noisy”, such that OSNs are quick to respond and
exhaust themselves. For instance, OSNs spike even in the absence of odorants (De
Bruyne et al., 1999, 2001). Moreover, OSN spike rates are fastest at odor-onset followed
by a bout of tonic activity before they deplete their vesicle reserves (Bhandawat et al.,
2007; Nagel and Wilson, 2011). Altogether, these observations suggest that OSN activity
alone - while useful for discerning stimulus identity and concentrations as the animal
traverses its environment — cannot efficiently encode all features of the animal’s olfactory

world.
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Projection neurons are far less selective in terms of their odor-tuning properties
than their presynaptic OSNs (Bhandawat et al., 2007; Olsen and Wilson, 2008). Every
“sister” PN within a glomerulus pools input from all OSNs that innervate the given
glomerulus, and consequently sister PNs show similar spontaneous and odor-evoked
response properties (Kazama and Wilson, 2008). An additional consequence of OSN
pooling by projection neurons, PN peak responses occur earlier than OSN responses at
odor-onset (Bhandawat et al., 2007; Olsen et al., 2010). More specifically, low OSN firing
rates induce a large change in their postsynaptic PNs’ firing rates, but PN spiking
becomes desensitized as OSN firing rates climb (Bhandawat et al., 2007; Olsen and
Wilson, 2008; Olsen et al., 2010). Even further, PNs can display different patterns of
responses as more OSNs are recruited, or if more/different sets of glomeruli are recruited
(Ng et al., 2002; Root et al., 2008; Silbering et al., 2008; Semmelhack and Wang, 2009;
Olsen et al., 2010). These observations suggest that PN responses are poorly predicted
by OSN responses (Wilson et al., 2004). This claim is best exemplified by PNs in the
glomerulus VM7, which do not respond to odorants that stimulate VM7 OSNs (Olsen and
Wilson, 2008). There is also growing evidence that some ePNs and iPNs form recurrent
cholinergic and electrical synapses within the AL (Wang et al., 2014; Shimizu and Stopfer,
2017), but form an antagonistic circuit at their axon terminals in the LH (Liang et al., 2013;
Strutz et al., 2014). In this latter instance, appetitive odors activate iPNs, which will then
inhibit ePN axons in the LH, thus shunting excitatory drive onto third-order neurons from
the ventrolateral protocerebrum and initiating an attractive behavioral program (Liang et
al., 2013; Strutz et al., 2014). This, therefore, illustrates how distinct neural output from
the AL (iPN vs. ePN output) can initiate distinct behavioral programs. However, before
these signals are relayed to higher-order structures (like the LH), different features of
these signals are adjusted by the activity of heterogeneous AL LNs.

Local interneurons, much like their morphological heterogeneity, have diverse and
complex physiological properties. Antennal lobe LNs can have bursty and/or tonic
stimulus responses, and individual LNs can display different patterns of intraglomerular
odor-evoked responses to different odorants (Silbering et al., 2008; Chou et al., 2010;
Seki et al., 2010). Moreover, LN activation linearly scales with odor concentration (Yaksi
and Wilson, 2010; Hong and Wilson, 2015) and different AL LNs show different temporal
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odor-evoked response properties (Chou et al., 2010; Nagel and Wilson, 2016). For
instance, some LNs respond fastest at odor-onset, some LNs respond fastest at odor-
offset, and some LNs respond indifferently to either extreme of the stimulus trial (Nagel
and Wilson, 2016). Furthermore, these response properties (in addition to the diversity of
morphological subtypes and transmitters used) enable AL LN activity to adjust the gain,
resolution, and temporal aspects of stimulus features encoding within the AL.

Recall sensory systems, olfaction included, play an essential role in the animal’s
ability to detect, identify, and discriminate amongst the rich stimulus diversity they
experience. To ensure the animal can do this, sensory systems employ several strategies
to dynamically adjust the range of individual stimulus features that they encode. For
instance, the animal may experience fluctuations in stimulus intensity as they navigate
their environment. In such cases where the animal experiences intense sensory input
(e.g., bright lighting, high odor concentration, etc.), the neurons may fail to properly
encode the given stimulus as a result of saturation. Conversely, animals may fail to detect
ecologically important stimuli (e.g., the scent of a predator) if they are present at low
intensities. To overcome these hurdles, sensory systems typically use a suite of
computations, such as “gain control” (Abbott et al., 1997; Carandini and Heeger, 2012;
Ferguson and Cardin, 2020), to adaptively adjust the sensory input-to-output ratio of a
network. In the AL, GABAergic and TKKinergic LNs target OSN axons to reduce the gain
of OSN input (Olsen and Wilson, 2008; Root et al., 2008; Ignell et al., 2009; Olsen et al.,
2010). Here, GABAergic LNs (for example) activate inhibitory GABAs receptors
expressed along OSN axons in an odor concentration-dependent manner such that PN
output is normalized (Bhandawat et al., 2007; Olsen and Wilson, 2008; Root et al., 2008;
Olsen et al., 2010). Moreover, the ability of such LNs to perform this function plays a vital
role in the animal’s ability to efficiently and effectively reproduce. For instance, decreasing
GABAergic gain control by reducing expression of GABABs receptors in pheromone-
sensing OSNs impairs the fly’s ability to locate a mate (Root et al., 2008). This suggests
that GABAergic gain control in pheromone-sensing glomeruli is necessary for this
glomerulus’ PNs to faithfully represent the stimulus to downstream partners. Additionally,
the degree of GABAergic or TKKinergic presynaptic inhibition varies from glomerulus-to-

glomerulus due to the differential GABA and/or TKK receptor expression, LN



12

morphological variability, and the animal’s state (Root et al., 2008; Ignell et al., 2009;
Hong and Wilson, 2015; Ko et al., 2015). Perhaps different selective pressures fostered
different levels of gain control across the various olfactory channels as a trade-off for
output speed vs. output information degeneration. For example, by installing fewer
inhibitory “nodes” that impinge on afferent input to a channel associated with responding
to a predator’s scent, then this channel has less feedback inhibition to overcome, and
therefore output from this channel can be sent to the relevant downstream neurons faster
to initiate the appropriate avoidance response. However, this would require a balance to
be struck wherein there is not too little presynaptic inhibition. If such channels - that are
clearly imperative to the animal’s survival - are too easily activated, then the animal may
mistakenly initiate an avoidance response and forgo vital resources they might not have
access to later on. Additionally, differential receptor expression to produce variable
amounts of gain control across the various olfactory channels may be an ingenious
means for conserving circuit topology across closely related species, but adaptively
adjusting circuit outcome according to pressures from the specific species’ ecological
niche. This adaptive adjustment of gain control mechanisms would be different from those
observed in visual circuits, like the retina, but this difference would not be surprising given
the greater diversity of stimuli encoded by chemosensory systems. Regardless of the
adaptive strategies underlying such circuit variability, LN-mediated gain control is an
important means for adjusting the strength of afferent input to avoid corrupting output
signal information.

In addition to compensating for variations in stimulus intensity, animals may also
need to adjust their ability to resolve different stimuli. At the neuronal level, AL LNs can
use lateral inhibition for sharpening the resolution with which they encode stimulus identity
(Wilson et al., 2004; Silbering et al., 2008; Martin et al., 2011). Here, PNs express both
GABAA and GABAB, while LNs express GABAa (Wilson and Laurent, 2005). Therefore, if
a given odorant stimulates a glomerulus that houses a GABAergic LN that innervates
multiple glomeruli, then PNs in those other glomeruli will experience a fast and prolonged
inhibitory epoch (Wilson and Laurent, 2005). Lateral inhibition, here, can be used to
restrict network responses to a strong stimulus (for instance), while filtering/depressing

weaker PN responses. Conversely, if the activated GABAergic LN targets other LNs then
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more olfactory channels can be rapidly recruited in the response via disinhibition. This
change both in terms of which olfactory channels are recruited, as well as the temporal
patterns of their responses, would likely summate within higher-order brain centers in a
distinct manner that has important consequences for encoding odorant identity and
concentration.-

Similar to disinhibition, LNs can also perform lateral excitation as a means for
broadening the resolution with which the AL encodes odorant identity and concentration
(Shang et al., 2007; Huang et al., 2010; Olsen et al., 2010; Yaksi and Wilson, 2010). The
first circumstantial evidence for lateral excitation in the Drosophila AL arose from the
observation that DM2 PNs responded to odors that did not stimulate their cognate OSNs,
suggesting extraglomerular excitatory inputs to DM2 PNs (Wilson et al., 2004). This was
later confirmed by others that tested DM2 PN responses in animals that DM2 OSNs lack
their cognate ORs, and therefore enabled them to test DM2 PN responses in the absence
of input from their presynaptic OSNs (Shang et al., 2007). However, these later
investigations could not rule out disinhibition as PN EPSPs remained even in the
presence of GABA receptor antagonists and with no OSN input (Shang et al., 2007).
Similar results were discovered by separate groups that recorded PN responses with
electrophysiology in the presence of GABA receptor antagonists and in an OR-null mutant
background (Olsen et al., 2007; Root et al., 2007). Eventually, multiple groups found that
this lateral excitation arises from a small population of excitatory LNs (eLNs) that form
excitatory synapses with many of the AL principal neurons (Shang et al., 2007; Huang et
al., 2010; Yaksi and Wilson, 2010). These eLNs are electrically-coupled (and in some
instances also form cholinergic synapses) to iLNs, other eLNs, and most PNs. This is, in
part, why the amount of iLN activation linearly scales with increasing odor concentration
(see above) (Yaksi and Wilson, 2010). Excitatory LNs can be inhibited by iLNs (via both
GABAA & GABAB), stimulated by reciprocal PN acetylcholine release, and receive
monosynaptic connections from OSNs (Huang et al., 2010; Yaksi and Wilson, 2010).
Moreover, different subsets of eLNs have different intrinsic properties, which presumably
confers differential odor-tuning properties across the various eLNs. Taken together, eLN
activity can enable redistribution of olfactory information throughout the AL, while

simultaneously increasing the strength of PN activity in response to weaker stimuli (e.g.,
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low odor concentration).

In addition to using fast-acting transmitters like GABA or acetylcholine adjust
different computations, AL LNs can use slower-acting neuropeptides (e.g., TKK) to adjust
many of these aforementioned computations over longer epochs. However, the role(s)
LN-mediated neuropeptide release in olfactory processing has been severely
understudied in comparison to faster-acting transmitters used by LNs. This dissertation
exposes a novel peptidergic signaling pathway within the AL implemented by one such

neuropeptide, myoinhibitory peptide (MIP).

C. MYOINHIBITORY PEPTIDE (MIP)

Myoinhibitory peptide (MIP; formerly designated “B-type allatostatins”) was first
isolated from the Locusta nervous system (“LOM-MIP”) and shown to suppress
spontaneous contractions in the Locusta and Leucophaea hindgut, and the Locusta
oviduct (Schoofs et al., 1991). Soon after, MIP was isolated from the Manduca sexta
nervous system (“MsMIP”), where it was shown to near-completely abolish hindgut
contractions (Blackburn et al., 1995, 2001). Around this time, homologous neuropeptides
were isolated from Gryllus nervous system, but were designated as a new member of the
allatostatin family of peptides (Allatostatin B, or AstB) due to MIP’s ability to suppress
juvenile hormone biosynthesis in Gryllus (Lorenz et al., 1995). Since then, MIP has been
found in many insects, such as Periplaneta (“Pea-MIP”) (Predel et al., 2001), Drosophila
(Williamson et al., 2001; Baggerman et al.,, 2002; Yew et al.,, 2009), Calliphora
(Kolodziejczyk and Nassel, 2011), Aedes (Predel et al., 2010), and Bombyx (“PTSP-1")
(Hua et al., 1999). To date, no vertebrate analog for MIP has been definitively identified,
although there are suggestions that MIP shares sufficient enough sequence homology to
galanin (i.e., W(Xs)W-amide motif) that the two may be homologous [see (Lundquist et
al., 1991)]. This supposition is somewhat supported by the observation that mutating the
amino acids between the two tryptophan residues does not hinder MIP’s ability to bind its
cognate receptor, the inhibitory sex peptide receptor (SPR) (Yapici et al., 2008; Kim et
al., 2010). Regardless, these comparative studies have revealed MIP’s high degree of

evolutionary conservation and that MIP’s allatostatic activity may be unique to few insects
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(e.g., Gryllus) (Nassel and Winther, 2010; Coast and Schooley, 2011). Consequently, in
the interest of having a unifying nomenclature, investigators have recommended the
name “myoinhibitory peptide” be used when referring to this neuropeptide or any member
of this neuropeptide family (Coast and Schooley, 2011; Yeoh et al., 2017).

Most of what we know about the mechanism underlying MIP’s effect(s) on a
network comes from work done in the Drosophila circadian and gustatory systems (Kim
etal., 2010; Oh et al., 2014; Min et al., 2016). In the circadian system, MIP decreases the
activity of wake-promoting pigment-dispersing factor (PDF) neurons throughout the night
by activating its inhibitory GPCR, sex peptide receptor (SPR) (Kim et al., 2010; Oh et al.,
2014; Shafer and Yao, 2014). Here, MIP release is highest just before and during sleep,
which allows it to therefore maintain a sleep-promoting network state over the course of
the night (Oh et al., 2014). In the gustatory system, MIP-SPR signaling controls food
intake and body weight maintenance (Min et al., 2016). Here, flies will overeat (relative to
the relevant controls) to the point of engorgement when the MIPergic neurons are
inactivated, or if experiments are performed in a MIP-null mutant background (Min et al.,
2016). Conversely, flies tend to eat less when MIPergic neurons are constitutively
activated by misexpression of the heat-activated TRPA1 channel in all MIPergic neurons
and extended heat exposure (Min et al., 2016). These investigators also found several
notable results that suggest MIP-SPR signaling not only controls the balance between
hunger and satiety, but directly influences the excitability of food-derived odor associated
channels. More specifically, animals that have their MIPergic neurons inactivated will
choose the arm of a two-choice olfactory assay (a T-maze apparatus) that houses a food-
derived odorant (Min et al., 2016). The same effect was observed in similar behavioral
experiments that were performed in a MIP-null mutant background, and was rescued by
MIP overexpression in all MIP neurons in this mutant background (Min et al., 2016).
Conversely, animals choose the food-odor arm of the T-maze far less when MIPergic
neurons are overactivated. It's notable that these particular animals actually display odor-
induced aversion (attraction index of -5% to -30%), whereas the relevant controls display
odor-induced attraction (attraction index of 10% to 40%), across multiple food odors (Min
et al., 2016). Moreover, sensillae associated with food-odor olfactory sensation spike

more frequently when all MIPergic neurons are inactivated (Min et al., 2016). Together,
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these results suggest MIP-SPR signaling controls the animal’s sensitivity to food-

associated odors and drive to search for food.

D. SEROTONERGIC MODULATION OF OLFACTORY PROCESSING

Di. Serotonin (5-HT) Sources

Serotonin is an ancient and pervasive signaling molecule that acts in nearly every
sensory system across diverse taxa (Peroutka and Howell, 1994; Hay-Schmidt, 2000;
Gaspar and Lillesaar, 2012). Concordantly, this single substance has been implicated in
a variety of broad state descriptors such as arousal, mood, and motivation (Cools et al.,
2008; Monti, 2011; Miyazaki et al., 2012; Luo et al., 2016). In general, there are two major
sources of 5-HT in mammals: gut-derived and brain-derived. The majority of the 5-HT in
the mammals is produced in the gut by enterochromaffin cells, then absorbed by platelets
and circulated throughout the periphery (Ni and Watts, 2006; Bertrand and Bertrand,
2010; Gershon, 2013; Matthes and Bader, 2018). However, gut-derived 5-HT does not
appear to cross the blood-brain-barrier (Berger et al., 2009; ElI-Merahbi et al., 2015),
therefore | will only consider brain-derived 5-HT here. There are ~26,000 neurons in the
mouse and rat brain that produce 5-HT, but the majority of these 5-HTergic neurons
(~17,000 neurons) are collectively referred to as the raphe nuclei (Steinbusch, 1981;
Ishimura et al., 1988; Vertes and Crane, 1997). The raphe nuclei can be further divided
into several subpopulations, such as the dorsal raphe nucleus (DRN). In mice, the DRN
constitutes the majority of 5-HTergic neurons in the brain (~9,000 5-HTergic neurons)
(Ishimura et al., 1988; Hornung, 2010; Ren et al., 2018). These DRN neurons, together
with neurons from the median raphe nucleus (MRN), innervate and modulate every
sensory processing center (Azmitia and Segal, 1978; Takeuchi et al., 1982; Doty, 1983;
Mclean and Shipley, 1987; Tork, 1990; Hurley et al., 2004; Muzerelle et al., 2016; Jacob
and Nienborg, 2018).

Invertebrate brains typically contain far fewer neurons than vertebrate brains. For
instance, the central nervous system of C. elegans has 302 neurons and Drosophila has
~200,000 neurons relative to ~70 x 10° neurons estimated in mice (White et al., 1986;
Herculano-Houzel et al., 2006; Meinertzhagen, 2018; Cook et al., 2019; Raji and Potter,
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2021). Despite having orders of magnitude fewer neurons, invertebrate sensory systems
must accomplish the same fundamental neural computations as vertebrates. This notion
extends to invertebrate 5-HTergic modulatory networks, where there are typically far
fewer 5-HTergic neurons, but many of the mechanisms for how 5-HT modulates sensory
processing are conserved. The Drosophila central brain, for instance, contains only ~90
serotonergic neurons (Vallés and White, 1988), and only 2 widely-projecting neurons (the
“CSDns”) provide synaptic 5-HT to the AL (Figure 1B) (Dacks et al., 2006; Roy et al.,
2007). Despite having only two 5-HTergic neurons, compared to >100 neurons that
innervate the vertebrate olfactory bulb from the DRN (Ren et al.,, 2018) and MRN
(Muzerelle et al., 2016), 5-HT modulates similar aspects of olfactory encoding in these
taxa (see below). Thus, because vertebrate and invertebrate sensory systems must solve
similar problems, comparing across taxa can reveal fundamental motifs of
neuromodulation of sensory processing.

Although much of my dissertation deals with the consequences of a presynaptic 5-
HTergic neuron acting on a direct postsynaptic partner, 5-HTergic neurons do not have
to form a synapse with a given cell in order to modulate the cell’s activity (Eid et al., 2013;
Fuxe et al., 2015). Serotonergic neurons have long been noted to use volume or bulk
transmission as a means to release 5-HT over large distances (sometimes >100microns),
and extended epochs (on the order of seconds) (Descarries et al., 1982; Chazal and
Ralston, 1987; Agnati et al., 1995; Bunin and Wightman, 1998; Hornung, 2010; Gaudry,
2018). For instance, in the cat auditory cortex, most of the 5-HTergic boutons lack
conventional synapses (DeFelipe et al., 1991). This principle extends across taxa, such
as in the visual system of the house fly, Calliphora. Here, 5-HTergic processes are
separated from other neurons by glia, lack synaptic specializations, and are dense core
vesicle-rich (a hallmark of bulk transmission) (Nassel and Cantera, 1985; Nassel, 1988).

Blood-borne 5-HT, similar to bulk-released 5-HT, also contributes to sensory
processing. For instance, in Drosophila blood-borne 5-HT activates nociceptors (Kaneko
et al., 2017) and is implicated in enhanced olfactory gain control (Zhang and Gaudry,
2016; Suzuki et al., 2020). Moreover, evidence suggests that blood-borne 5-HT acts on
excitatory 5-HT2B receptors on OSN dendrites/somata likely as a way of enhancing OSN

excitability. This inference derives from evidence that the Drosophila CSDns do not
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directly synapse onto OSNs (Coates et al., 2017), yet OSNs broadly express the
excitatory 5-HT2B receptor (Sizemore and Dacks, 2016; Deanhardt et al., 2021;
McLaughlin et al., 2021). In addition, in experiments where the OSN somata were
removed for performing antennal nerve shock, exogenous 5-HT did not directly affect
activity measured at the axon terminals of OSNs (Dacks et al., 2009). These lines of
evidence suggest then that the 5-HT2B receptor likely localizes to OSN dendrites/somata
in the periphery, where 5-HT in the haemolymph can act on them. Indeed, there are 5-
HTergic fibers in the periphery (Vallés and White, 1988) and the antennal hearts of many
insects constantly circulates haemolymph into these olfactory appendages (Pass, 2000;
Zhukovskaya and Polyanovsky, 2017). Ultimately, blood-borne 5-HT might act to
coordinate the activity of certain OSN according to the fly’s needs. This mechanism would
be particularly advantageous for increasing the sensitivity of OSNs that respond to food

or pheromones when the fly is hungry or aroused, respectively.

Dii. Serotonergic Neurons: Heterogeneous in Nearly Every Way

The 5-HTergic system has the capacity to influence olfactory processing in
complex, and stimulus-specific ways, across a multitude of behavioral contexts. This is,
in part, achieved through the heterogeneous properties of the neurons that release 5-HT
(Okaty et al.,, 2019). For instance, individual DRN neurons have different electrical
properties due to differential ion channel expression levels (Calizo et al., 2011; Templin
etal., 2012). This suggests that two given DRN neurons receiving identical synaptic input
can still differentially modulate the same sensory network. To the best of our knowledge,
ion channel expression profiles of 5-HTergic neurons have not been compared in
invertebrates. However, the intrinsic properties and region-specific synaptic inputs (the
AL vs. LH) onto the CSDns enable this single 5-HTergic neuron to perform multiple
operations across different olfactory processing regions (Zhang et al., 2019a; Coates et
al., 2020). Thus, whether biophysical or connectivity-specific, these features of 5-HTergic
neurons expand the complexities underlying 5-HTergic modulation of sensory
processing.

In addition to these heterogeneous features, individual 5-HTergic neurons can also
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release more than just 5-HT onto a downstream neuron. Though such “co-transmitters”
have not been identified for the Drosophila CSDns (Sizemore et al., 2020), there are
examples of the heterogeneous computational consequences of 5-HTergic neurons using
multiple transmitters in the vertebrate olfactory bulb. For example, subpopulations of 5-
HTergic DRN neurons co-express either glutamate, GABA, several neuropeptides, and
nitric oxide synthase (Fu et al., 2010; Liu et al., 2014; Sengupta et al., 2017; Ren et al.,
2018; Huang et al., 2019). This feature can enable even a single co-transmitting DRN
neuron to affect a downstream target on multiple timescales, which can have a large
impact on the targeted neuron’s stimulus-response properties. For instance, when DRN
projections to the olfactory bulb are activated, DRN-derived 5-HT and glutamate
differentially act on both mitral and tufted cells. The glutamate acts to directly enhance
the odor-evoked responses in both output neurons subtypes, while the 5-HT enhances
decorrelation of only mitral cell odor-responses (Kapoor et al., 2016). The observed
enhancement is further increased by pharmacologically blocking 5-HT receptors, and
nearly abolished when glutamate receptors are similarly blocked (Kapoor et al., 2016).
Although 5-HT may be acting through polysynaptic interactions in this particular case
(Hardy et al., 2005; Liu et al., 2012; Brill et al., 2015), the overall consequence is that co-
transmission allows raphe neurons to affect their targets on different timescales through
ionotropic and metabotropic receptors, respectively. This allows raphe neurons to both
quickly alter a given downstream target’s neuronal activity, but also leave that target’s
activity altered for extended epochs.

The non-uniform anatomical projections of 5-HTergic neurons, like the other
features of 5-HTergic neurons previously discussed, also make determining the
mechanisms behind 5-HTergic modulation of olfaction non-trivial. Moreover, these
heterogeneous projections often reflect multiple “functional domains”, wherein the 5-
HTergic neuron may be acting more/less based on innervation density. For instance, the
Manduca sexta CSDns likely do not directly act on OSNs, since they do not innervate the
regions of the AL occupied by OSNs (Sun et al., 1993; Lizbinski et al., 2016). In
vertebrates, the olfactory bulb is innervated by 5-HTergic processes from both the MRN
and DRN, but these processes are most dense in distinct synaptic layers (Mclean and

Shipley, 1987; Gracia-Llanes et al., 2010; Muzerelle et al., 2016). Here, processes from
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the MRN are most dense in the region occupied mostly by periglomerular cells (a subclass
of LN), while processes from the DRN are densest in regions occupied by mitral and tufted
cells (the vertebrate analog of insect PNs) and granule cells (another subclass of LN)
(Muzerelle et al., 2016). Within the Drosophila AL, the CSDns innervate different glomeruli
to varying degrees and differentially connect with the various principal neuron types from
animal-to-animal (Singh et al., 2013; Coates et al., 2017). Altogether, these
heterogeneous intrinsic, extrinsic, and morphological features of 5-HTergic neurons
enable them to distinctly target different processing layers and/or stimulus-specific

microcircuits.

Diii. The Serotonin Receptor (5-HTR) Family Across Taxa

Just as 5-HTergic neurons are themselves diverse, there is a diversity of serotonin
receptors (5-HTRs) that vary in their affinity for 5-HT, time course of action and the
secondary messenger system to which they couple (Nichols and Nichols, 2008). This
receptor diversity allows 5-HT to differentially target neuronal populations that support
distinct sensory computations across modalities.

An array of 5-HTRs are encoded in nearly every animal’s genome (Peroutka and
Howell, 1994; Ribeiro et al., 2005; Azmitia, 2006; Vleugels et al., 2015; Ishita et al., 2019).
The first 5-HTR emerged ~700-800 million years ago (Peroutka and Howell, 1994) and
there are seven major 5-HTR families in vertebrates (5-HT1-7) and at least three across
the invertebrates (5-HT1, 2, and 7). However, there are notable clade-specific exceptions
such as the MOD-1 ionotropic 5-HTR in C. elegans (Ranganathan et al., 2000), the 5-
HT8 receptor in P. rapae, the 5-HT4 and 6 receptors in some molluscs (Nagakura et al.,
2010; Tamvacakis et al., 2015, 2018; Kim et al., 2019), the non-functional 5-HT5B
receptor subtype in humans (Grailhe et al., 2001), the absence of these receptors in the
Ctenophora genome (Moroz et al., 2014), and the 5-HT4 receptor in A. japonicus (Wang
et al., 2017). Invertebrate 5-HTRs are typically named for the vertebrate 5-HTR family
with which they share the most sequence homology, but the pharmacological properties
of these counterparts can differ. Methysergide, for example, acts as a broad-spectrum 5-

HTR antagonist in vertebrates, but agonizes or has no effect on select invertebrate 5-



HTRs (Roser et al., 2012; Dacks
etal., 2013; Blenau et al., 2017).
There are fourteen subtypes of
vertebrate 5-HTRs (e.g., within
the 5-HT2 family there are 5-
HT2A-C), some of which can
have several isoforms as result
of post-transcriptional
modifications to the nascent 5-
HTR transcript (Burns et al.,
1997; Bockaert et al.,, 2006;
Hannon and Hoyer, 2008;
Tanaka and Watanabe, 2020).
Conversely, invertebrate 5-HTR
subtypes are generally encoded
at distinct genomic loci and each
5-HTR has a single predicted
isoform. For example, the five
Drosophila 5-
HTRs (Figure 2A) derive from

five separate genomic loci and

melanogaster

encode a single spliceform (Witz
et al., 1990; Saudou et al., 1992;
Colas et al., 1995; Gasque et al.,
2013). Of these different 5-HTR
subtypes, most if-not-all all are
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Figure 2. The Drosophila 5-HT receptor family members and
olfactory computations modulated by 5-HT.

(A) The Drosophila genome encodes five distinct 5-HT receptors
(5-HTRs): 5-HT1A (orange), 5-HT1B (green), 5-HT2A (blue), 5-
HT2B (red), and 5-HT7 (grey). The 1-subtype receptors are
negatively coupled to adenylate cyclase, and thus decrease
intracellular cAMP. While the 2-subtypes and 7-subtype
receptors are positively coupled to PLC/IP, signaling and
positively coupled to adenylate cyclase, respectively. For these
reasons, we generally refer to the two 1-subtype receptors as
“inhibitory” and the 2-subtypes and 7-subtype as “excitatory”,
based on the terminal consequences on the cell’s
excitability/biophysical properties.

(B) Serotonin (5-HT) can alter stimulus intensity encoding by
shifting the slope of the input-output relationship, modulating
response strength, or offsetting the threshold for activation.

(C) Serotonin (5-HT) can alter stimulus identity encoding by
altering the tuning breadth or by decreasing spontaneous
activity to increase the signal-to-noise ratio.

For B and C: “Control” refers to the neuron’s response (albeit,
based on stimulus intensity or identity) before 5-HTergic
modulation (“5-HT” traces).

sensory processing centers across phyla.

Div. Olfactory Transformations via Serotonin Receptor Signaling
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Like in other modalities (Sizemore et al., 2020), 5-HTRs expressed by LNs can
enable indirect modulation of OSN activity to modulate the gain of sensory input. For
example, 5-HT stimulates 5-HT2C expressing juxtaglomerular cells in the olfactory bulb
to increase the amount of presynaptic inhibition exerted upon OSNs (Petzold et al., 2009).
In doing so, 5-HT reduces the gain of OSN responses and thus the amount of sensory
input entering the olfactory bulb (Petzold et al., 2009). Moreover, 5-HT can also indirectly
enhance presynaptic inhibition by activating 5-HT2A receptors expressed by excitatory
external tufted cells, which in turn provide excitatory drive to inhibitory short axon and
periglomerular cells (Liu et al., 2012; Brill et al., 2015). In this way, 5-HT can potentiate
inhibitory inputs to OSNs as a means of decreasing the gain of sensory input. Serotonin
similarly indirectly decreases the strength of OSN input in the Drosophila AL by enhancing
presynaptic inhibition (Dacks et al., 2009; Gaudry, 2018), presumably by activating
excitatory 5-HT7 receptor along GABAergic LNs (Suzuki et al., 2020).

Recall that, at the synaptic level, lateral inhibition and excitation can be used to
sharpen or broaden the resolution with which they encode stimulus identity, respectively
(Martin et al., 2011). Not surprisingly, 5-HT also targets these aspects of sensory
encoding (Figure 2B-C). Such is the case in the vertebrate piriform cortex, where 5-HT
sharpens neuronal representations of odors by decreasing certain mitral/tufted cells’
spontaneous activity but leaving their odor-evoked responses unaffected (Lottem et al.,
2016). In addition to sharpening responses, 5-HT can also broaden the receptive range
of neurons in a given sensory system. In the olfactory bulb, 5-HT activates excitatory 5-
HT2A receptors expressed by LNs to enhance the amount of feedforward excitation mitral
cells (Liu et al., 2012; Brill et al., 2015; Huang et al., 2017). The combined actions of both
5-HT and glutamate released by DRN neurons increase the sensitivity of tufted cells and
decorrelate odor-evoked responses of mitral cells, presumably increasing the separation
of representations of different odors (Kapoor et al., 2016). In the Drosophila AL, 5-HT has
the potential to affect the breadth of odor-evoked representations in a similar way, as the
cholinergic and electrically-coupled LNs that broaden odor-tuning properties express
excitatory 5-HTRs (Shang et al., 2007; Huang et al., 2010; Yaksi and Wilson, 2010;
Sizemore and Dacks, 2016). Serotonin can also directly modulate the excitability of

second-order neurons within a sensory system to similarly modulate stimulus tuning
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breadth. For example, application of exogenous 5-HT increases insect PN excitability
(Kloppenburg and Hildebrand, 1995; Kloppenburg et al., 1999; Dacks et al., 2009; Zhang
and Gaudry, 2016). This effect, however, is at least partially polysynaptic and depends
on the method of delivery as activation of Drosophila CSDns can have little-to-no effect
on the odor-evoked responses of output neurons depending on the glomerulus (Zhang
and Gaudry, 2016). This discrepancy could arise from cell class-specific receptor
expression in the AL (Sizemore and Dacks, 2016), differences between 5-HTR binding
affinities (Gasque et al., 2013), or differences in the time course of receptor activation and
inactivation. Regardless, there appear to be a variety of means by which 5-HT can affect

the resolution with which stimulus identity is encoded.

E. METAMODULATION: MODULATING THE ACTIONS OF ANOTHER MODULATOR

Ei. Serotonergic Metamodulation In Sensory Processing

All sensory systems are influenced by multiple neuromodulators released from
intrinsic/extrinsic neurons, whose collective concentrations at any given time can be
thought to represent the “modulatory tone” of the network at that time (Katz and Edwards,
1999; Iwano and Kanzaki, 2005; Berg et al., 2009; Carlsson et al., 2010; Chalasani et al.,
2010; Marder et al., 2014; Jacob and Nienborg, 2018; Lizbinski et al., 2018; Nassel, 2018;
Nassel and Zandawala, 2019). Much like how changes in the collective concentrations of
intrinsic/extrinsic factors can have profound consequences on a cell’'s development
(Pearson and Doe, 2004; Doe, 2008), changes in even individual modulators can have
profound consequences on the network’s ability to rapidly/efficiently adjust activity. These
changes in modulatory tone might, therefore, reflect dramatic shifts in the animal’'s
behavior state as it relates to a given sensory experience. Therefore, an individual
modulator, such as 5-HT, can profoundly alter network-wide activity by simply adjusting
existing network-intrinsic modulatory circuitry to rapidly adjust behavioral output.

As outlined above, 5-HT influences interneuron-mediated GABAergic modulation
in both vertebrate and invertebrate primary olfactory systems (see above) [see also

(Lizbinski and Dacks, 2018)]. Interneurons, more generally, are an ideal target for
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modulation given their central role in network processing in serial and parallel, and the
diversity of heterogeneous subtypes (see above). Moreover, when the interneurons being
modulated also co-release multiple transmitters [e.g., (Lizbinski et al., 2018)], then the
computations these LNs adjust can be nonlinearly transformed and layered atop one
another to produce nearly exponential network outputs. More specifically, 5-HT can have
heterogeneous and complex effects on olfactory processing by leveraging the properties
of this single circuit node (GABAergic LNs).

Serotonergic modulation of peptidergic signaling has not been studied in olfactory
systems, but has been shown in other systems. For instance, interneurons of the
vertebrate sensory cortex that release vasoactive intestinal peptide (VIP) also express
the excitatory ionotropic 5-HT3 receptor (Lee et al., 2010; Rudy et al., 2011; Cardin,
2018). Activating 5-HT3 receptors in VIP interneurons causes a hyperpolarization in 5-
HT3-negative inhibitory interneurons, which subsequently disinhibits pyramidal neurons
(Pfeffer et al., 2013; Jiang et al., 2015). Moreover, serotonergic stimulation of VIP
interneurons also produces a latent, GABAs-receptor mediated hyperpolarization in these
same pyramidal cells (Takesian et al., 2018). Therefore, by acting through these
interneurons, serotonin can have a large impact on network dynamics and even modulate
distinct aspects of sensory processing [e.g., (Pi et al., 2013)]. Moreover, the activity of the
VIP interneurons appears to be at least one determinant for the changes observed in the
activity of visual cortex circuitry according to the animal’s ongoing behavioral state
(Bennett et al., 2013; Polack et al., 2013; Fu et al., 2014; Pakan et al., 2016; Batista-Brito
et al., 2017). Collectively, these results suggest that there may be a serotonin-induced
contingency switching module in visual cortex, wherein the animal’s locomotor activity
induces serotonergic activation of VIP interneurons. Then, perhaps after some epoch
post-behavior initiation, negative feedback terminates this serotonin-induced module.
This instance nicely illustrates the striking reflection between changes in a network’s
modulatory tone and dramatic shifts in the animal’s behavioral state (in-rest vs. mobile),
as well as the important role metamodulation plays in network processing and output.
However, perhaps as a consequence of neuromodulation being classically understudied
in sensory processing, the consequences of metamodulation remain largely untested.

Therefore, in this dissertation | address three main questions regarding 5-HTergic
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metamodulation of olfactory processing. First, | establish a “functional atlas” of which
neurons in the Drosophila AL express which of the five serotonin receptors (Chapter 2).
Later, | leverage this “atlas” to resolve how the activity of one serotonin receptor shapes
the activity of a specialized neuropeptidergic signaling pathway (Chapter 4). However,
before | can address how the activity of this serotonin receptor adjusts the activity of this
neuropeptidergic pathway, | determine the circuit and signaling logic underlying the
actions of this peptidergic pathway’s on olfactory processing (Chapter 3). Altogether, my

work establishes several key insights that expand our understanding of neuromodulation
of sensory processing.
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CHAPTER 2

Serotonergic Modulation Differentially Targets Distinct Network Elements within
the Antennal Lobe of Drosophila melanogaster
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SUMMARY:

Sensory systems internalize and process information from the environment to form
the animal’s internal representation of its surroundings. These systems typically consist
of several interconnected neural networks, wherein information regarding a single
stimulus (e.g., stimulus identity or strength) are extracted and contextualized with other
stimuli present in the environment (e.g., the scent of a predator) and the animal’s internal
needs (e.g., satiation state). In this way, even the same stimulus can produce divergent
behaviors across different animals. One nearly-ubiquitous mechanism nervous systems
employ to adjust neural network activity according to the animal’'s internal needs and
external demands is neuromodulation.

Neuromodulation promotes behavioral flexibility from anatomically restricted
neural networks by altering the biophysical and synaptic properties of individual neurons
(Kandel and Schwartz, 1982; Destexhe and Marder, 2004; Marder, 2012; Nadim and
Bucher, 2014; Kim et al., 2017). A single neuromodulator can have short- and/or long-
lasting effects on individual network members that can suppress and/or expand the
number of network members participating in information processing. These multi-
dimensional effects of a single neuromodulator are, in part, a direct consequence of the
diversity and distribution of receptor subtypes activated by the given neuromodulator.
Thus, to predict the mechanisms underlying the actions of any given neuromodulator in
a network, we must first determine the functional class and spatial organization of neurons
that express each receptor for that given neuromodulator. This problem is well-illustrated
by earlier investigations that sought to determine the mechanism underlying the actions
of serotonin (5-HT) in the first olfactory processing center in the Drosophila brain, the
antennal lobe (AL) (Dacks et al., 2009).

Olfaction for Drosophila begins when odorants bind to odorant receptors (ORs)
expressed along one or more of the ~1,200 olfactory sensory neurons (OSNs) housed
within sensillae along their antennae and maxillary palps (Stocker, 2001; Grabe et al.,
2016). A chemical-to-electrical signal transformation occurs upon odorant binding to its
cognate OR, thus activating the given OSN. Depending on the OR expressed by the
activated OSN, the OSN axons will relay this electrical signal to one or more of the ~51
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glomeruli that comprise the AL (Vosshall et al., 2000; Couto et al., 2005; Bates et al.,
2020; Marin et al., 2020) where they form excitatory synapses with second-order relay
and local processing neurons (projection neurons (PNs) and local interneurons (LNs),
respectively). The initial OSN electrical signal is then extracted, decoded, and recoded in
an as-of-yet-undetermined manner before (& likely concurrently) the signal is sent via PN
projections to the mushroom body and lateral horn (de Belle and Heisenberg, 1994;
Yasuyama et al., 2003; Jefferis et al., 2007; Jeanne and Wilson, 2015; Jeanne et al.,
2018; Dolan et al., 2019; Frechter et al., 2019; Bates et al., 2020). Within the Drosophila
AL, there exists only one source of synaptic 5-HT; the contralaterally projecting,
serotonin-immunoreactive deutocerebral neurons (CSDns) (Dacks et al., 2006; Roy et al.,
2007; Coates et al., 2017, 2020). Moreover, much like in other insects (Hill et al., 2002;
Dacks et al., 2008), exogenous application of 5-HT alters Drosophila AL principal neuron
activity (Dacks et al., 2009; Zhang and Gaudry, 2016). For instance, exogenous
application of 5-HT increases PN sensitivity, and enhances PN odor-evoked responses
in a stimulus-dependent manner in the Drosophila AL (Dacks et al., 2009). However, this
observation could equally result from 5-HT acting directly on these PNs to enhance their
excitability, or 5-HT altering the synaptic input these PNs receive (albeit by increasing
excitation or decreasing inhibition) depending on 5-HTR expression within the AL.
Therefore, in this chapter, | leverage the genetic-accessibility and anatomically-tractable
of the Drosophila melanogaster olfactory system to establish a “functional atlas” of 5-HTR
expression within the AL. More specifically, | use immunocytochemistry, intersectional
genetics, and transgenics that couple the production of a given 5-HTR to the production
of GFP, to determine the number and functional identities of every AL neuron that
expresses each of the five 5-HTRs. | found that each 5-HTR is expressed by specific
subsets of neurons, suggesting 5-HT targets multiple levels of olfactory processing.
Generally, the inhibitory 5-HTRs are expressed by inhibitory neurons including
GABAergic PNs and a subpopulation of LNs. Conversely, excitatory 5-HTRs are
expressed by OSNs and cholinergic PNs. This suggests serotonin’s effects on olfactory
processing within the AL are mediated by a combination of network-wide disinhibition and
glomerulus-specific enhancement. More specifically, | found that OSNs exclusively
express 5-HT2B, which suggests that 5-HT has cell-class specific effects on OSN activity.
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In contrast to OSN 5-HTR expression, | also found that the ventral PNs (vPNs) express
all five 5-HTRs, therefore suggesting 5-HT diversely affects vPN activity. Moreover, this
suggests that 5-HT likely plays an important role in behavioral attraction to innately
appetitive odors as vPN activity has been implicated in promoting olfactory attraction
(Masse et al., 2009; Liang et al., 2013; Strutz et al., 2014; Das Chakraborty and Sachse,
2021). Ultimately, this “functional atlas” of 5-HTR expression in the Drosophila AL
provides a mechanistic framework for the effects of 5-HT on olfactory processing in this

network.
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(this chapter is taken directly from my publication “Sizemore, T.R. & Dacks A.M. (2016).
Serotonergic Modulation Differentially Targets Distinct Network Elements within the
Antennal Lobe of Drosophila melanogaster. Sci Rep 6, 37119”.)

ABSTRACT

Neuromodulation confers flexibility to anatomically-restricted neural networks so
that animals are able to properly respond to complex internal and external demands.
However, determining the mechanisms underlying neuromodulation is challenging
without knowledge of the functional class and spatial organization of neurons that express
individual neuromodulatory receptors. Here, we describe the number and functional
identities of neurons in the antennal lobe of Drosophila melanogaster that express each
of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances
odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons
(LNs), the receptor basis for this enhancement is unknown. We used endogenous
reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to
identify neurons, based on cell class and transmitter content that express each receptor.
We find that specific receptor types are expressed by distinct combinations of functional
neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while
distinct classes of LNs each express different 5-HTRs. This study therefore provides a
detailed atlas of 5-HT receptor expression within a well-characterized neural network, and

enables future dissection of the role of serotonergic modulation of olfactory processing.

INTRODUCTION

Animals continually alter their behavior to meet dynamic internal and external
demands. Neuromodulation promotes behavioral flexibility from anatomically restricted
neural networks by altering the biophysical and synaptic properties of individual neurons
(Katz, 1999; Marder, 2012; Nadim and Bucher, 2014). Typically, neuromodulators
activate G-protein coupled receptors (GPCRs) (Gudermann et al., 1997) with ligand
binding initiating an intracellular signaling cascade that dictates the effect of a
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neuromodulator on a neuron. Depending on the G-protein associated with a given
neuromodulatory receptor, a single neuromodulator can differentially affect the excitability
and the synaptic strength of individual neurons in a network (Destexhe and Marder, 2004;
Villalobos et al., 2005; Blenau and Thamm, 2011; Nadim and Bucher, 2014). Moreover,
these receptors can be expressed by multiple cell types within a sensory circuit (Hen,
1992; Villalobos et al., 2005; Andrade, 2011; Blenau and Thamm, 2011), and/or
concertedly expressed by the same cell (Beique et al., 2004) thus compounding the
effects of a single neuromodulator. The multi-dimensional effects of a single
neuromodulator acting on individual neurons within a network increases the dynamic
range of network activity, ultimately promoting depth to behavioral output. Within the
antennal lobe (AL) of Drosophila, the first olfactory processing center of the brain, the
neuromodulator serotonin (5-HT) has widespread effects on odor-evoked responses of
different neuronal classes (Dacks et al., 2009). However, it is difficult to determine how 5-
HT modulates olfactory processing without knowing which functional neuron classes
express each 5-HT receptor (5-HTR). Here, we exploit recent technological advances to
generate a comprehensive atlas of 5-HTR expression in the well-characterized AL
of Drosophila.

In the AL of Drosophila there are three major neuron classes that each perform
distinct functions (Fig. 1a); olfactory sensory neurons (OSNSs), projection neurons (PNs),
and local interneurons (LNs) (Wilson, 2013). The dendrites and soma of odor-detecting
OSNs are housed in the antennae and maxillary palps and, generally, each OSN
expresses one chemosensory receptor protein endowing them with sensitivity to a
particular set of odorants (Joseph and Carlson, 2015). The axon terminals of OSNs that
express the same chemosensory protein converge in the same glomerulus (Vosshall et
al., 2000; Couto et al., 2005; Fishilevich and Vosshall, 2005) where they form excitatory
synapses with PNs and LNs. Projection neuron cell bodies surround the AL in 3 distinct
cell clusters: ventral, lateral, and anterodorsal cell clusters (lto et al., 2014; Sakuma et al.,
2014) Projection neurons, the second-order neurons of the AL, express acetylcholine (e-
PNs) (Yasuyama et al., 2003) or GABA (i-PNs) (Okada et al., 2009). Recent evidence
suggests that these PN types may respond to different categories of odors based on the
odor’s attractiveness (Liang et al., 2013; Parnas et al., 2013; Strutz et al., 2014). PNs
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project to two higher-order brain structures, the mushroom bodies and lateral horn (de
Belle and Heisenberg, 1994; Yasuyama et al., 2003; Jefferis et al., 2007). Projection
neuron spiking activity is refined by several distinct classes of AL LNs that act upon PNs
directly, as well as the input that they receive from OSNs and other LNs. LNs are
remarkably diverse in their morphology and physiology (Chou et al., 2010; Seki et al.,
2010). In terms of transmitter content, subsets of LNs express GABA (Jackson et al.,
1990; Python and Stocker, 2002), acetylcholine (Shang et al., 2007; Huang et al., 2010),
glutamate (Das et al., 2011; Liu and Wilson, 2013), neuropeptides (Ignell et al., 2009;
Carlsson et al., 2010) and can be electrically coupled (Yaksi and Wilson, 2010). Thus,
even within these major AL neuron classes, there is a large degree of diversity which may
also be indicative of differences in their expression of modulatory receptors.

Within the AL of Drosophila there are two 5-HT immunoreactive neurons; the
contralaterally projecting, serotonin-immunoreactive deutocerebral (CSD) neurons
(Dacks et al., 2006; Roy et al., 2007). Each CSD neuron innervates both ALs, as well as
both lateral horns. Exogenous application of 5-HT in Drosophila increases PN sensitivity,
and enhances PN responses in an odor-dependent manner (Dacks et al., 2009).
Serotonin also decreases the strength of OSN responses to antennal nerve stimulation
by enhancing GABAergic presynaptic inhibition of OSNs. However, 5-HT could enhance
the activity of a given neuron by directly affecting excitability or by altering the synaptic
input that a neuron receives either by increasing excitation or decreasing inhibition
depending on 5-HTR expression within the network. The Drosophila genome encodes
five 5-HTR genes (5-HT1A, 1B, 2A, 2B, and 7) that target distinct second-messenger
pathways. 5-HT1-type, 2-type, and 7-type receptors are negatively coupled to adenylate
cyclase, positively coupled to phospholipase C, and positively coupled to adenylate
cyclase, respectively (Witz et al., 1990; Saudou et al., 1992; Colas et al., 1995; Gasque
et al., 2013). Therefore, the 5-HT1 type receptors are generally inhibitory, while the 5-
HT2 type and 7 are generally excitatory (Nichols and Nichols, 2008). Thus, to determine
the receptor basis for the effects of 5-HT on individual neuronal classes within the AL we
made use of the newly available 5-HTR MiMIC T2A-GAL4 protein-trap and gene-trap
transgenic fly lines (Gnerer et al., 2015) in combination with immunocytochemistry. These
fly lines have undergone recombinase-mediated cassette exchange (RMCE) in order to
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replace their 5’ non-coding (“gene-trap”) or coding-intronic (“protein-trap”) MiMIC cassette
with a GAL4 containing cassette (Bateman et al., 2006; Venken et al., 2011; Gnerer et
al., 2015). In the case of the gene-trap lines, the MIMIC cassette is replaced with a
cassette encoding a universal splice-acceptor and GAL4. In the case of the protein-trap
lines, the MiMIC cassette is replaced with one that encodes a universal splice acceptor
followed by a self-cleaving T2A peptide (Gonzalez et al., 2011; Diao and White, 2012)
fused to the GAL4 coding sequence [see (Gnerer et al., 2015)] for a detailed description
of cassette insertion sites). Thus, the gene-trap and protein-trap 5-HTR lines represent
endogenous 5-HTR gene transcription and translation, respectively. However, with the
exception of 5-HT7, we rely on protein-trap 5-HTR lines to determine what neuronal
populations express a given 5-HTR. It should be noted that this approach relies on
endogenous 5-HTR translation or transcription to produce GAL4, and subsequently GFP
throughout a 5-HTR expressing neuron. Thus, GFP expression does not reflect the
distribution of individual 5-HTR proteins along a cell, but rather that a given neuron
expressed a 5-HTR. We find that different protein-trap lines for the same 5-HTR highlight
neurons of the same functional class (Fig. 1b—f and Table 1). However, in some
instances, we note subtle differences between the number of neurons labeled by T2A-
GAL4 lines for the same 5-HTR (see Supplementary Information Fig. S1). At the
extreme, the difference between two T2A-GAL4 lines for 5-HT2B is ~2—4 PNs out of a
population of ~51 PNs (~4—-8% of the entire population). More importantly, coding-intronic
insertion lines for the same 5-HTR were expressed by the same combinations of neuronal
populations (i.e., OSNs, latPNs, vPNs, etc.) and sub-population (i.e., TKKinergic LNs,
MIPergic LNs, etc.) (Supplementary Information Fig. S1).

In general, we found that each 5-HTR is expressed by distinct neuronal
populations suggesting that 5-HT differentially modulates separate features of olfactory
coding. For the most part, the excitatory 5-HTRs (5-HT2A, 2B, and 7) were expressed by
excitatory AL neurons, whereas distinct classes of LNs expressed different sets of 5-
HTRs. This suggests that 5-HT has both direct effects on PN excitability, as well as
indirect effects on PN responses via modulation of the lateral interactions exerted within
and between glomeruli by LNs. Our results represent the first steps towards
understanding the mechanistic basis for serotonergic modulation on Drosophila olfactory



59

processing.

RESULTS
Antennae and Maxillary Palp OSNs express 5-HT2B

In Drosophila, OSN axons cross the midline via the antennal commissure to
innervate a specific glomerulus in both the ipsilateral and contralateral AL (Stocker, 1994).
Thus, neurites crossing the midline via the antennal commissure provide a reliable
anatomical marker for OSNs. We observed a large amount of GFP-expressing fibers
crossing through the antennal commissure in both 5-HT2B T2A-GAL4 lines (Fig. 2a) that
were not apparent in other 5-HTR lines. The exception to this was the 5-HT7 T2A-GAL4,
in which there were a small number of fibers with extremely faint GFP expression (data
not shown). Additionally, there were a large number of GFP-expressing cell bodies in both
the antennae (Fig. 2b) and the maxillary palps (Fig. 2c), suggesting that OSNs express
the 5-HT2B receptor. To confirm that the 5-HT2B T2A-GAL4 driven GFP-expression in
axons crossing the antennal commissure originated from OSNs within the antennae and
maxillary palps, we ablated either or both appendages of newly eclosed adult flies and
examined for the presence of GFP in the antennal commissure. Removal of either the
antennae (Fig. 2d) or maxillary palps (Fig. 2e) on their own only partially eliminated the
expression of GFP within the antennal commissure. However, removal of both the
antennae and maxillary palps resulted in total loss of GFP-positive arbors crossing the
antennal commissure (Fig. 2f), indicating that OSNs in both the antennae and maxillary
palps express the 5-HT2B receptor.

Lateral PNs and Anterodorsal PNs express excitatory 5-HTRs

The majority of the excitatory PNs (ePNs) reside in the lateral and anterodorsal
cell clusters (latPNs and adPNs, respectively). Previous reports have identified ~35
latPNs (Jefferis et al., 2001) (based on latPNs expressed by GH146-GAL4) and ~73
adPNs (Lai et al., 2008), the majority of which are cholinergic (Yasuyama et al., 2003).
14.59+1.01 (n=11) latPNs express 5-HT2A (Fig. 3a, b), while 12.04+0.86 (n=13)
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latPNs express 5-HT7 (Fig. 3c, d). The 5-HT2B is expressed by 9.67+0.13 (n*=2
transgenic lines, n=13 and 10 brains per line) latPNs (Fig. 3e, f). To a lesser extent,
4.58 +0.90 (n* = 3 transgenic lines, n =611 brains per line) latPNs express 5-HT1A (data
not shown). Within the adPNs, 19.3 £ 0.53 (n = 10) cells express 5-HT7 (Fig. 3g—h), while
7.88 £0.67 (n* =2 transgenic lines, n =9 and 7 brains per line) cells express 5-HT2B (Fig.
3i, j). Similar to the number of 5-HT2B expressing adPNs, 5-HT1A is expressed by
8.12+0.62 (n*=3 transgenic lines, n=8-9 brains per line) adPNs (data not shown).
Exogenous application of 5-HT increases the odor-evoked responses of ePNs within
these two cell clusters (Dacks et al., 2009), therefore this enhancement is at least in part
direct in nature, as 5-HT2A and 5-HT7 are positively coupled to IP3 and cAMP pathways,

respectively.

Widespread 5-HTR Expression within the Ventral PNs

Cells of the vPN cell cluster project into the AL through a characteristic fascicle,
which we refer to as the “ventral AL fascicle” (see Supplementary Information Fig. S1),
and send their axons to the lateral horn through the mediolateral antennal lobe tract
(mlIALT) (Ito et al., 2014). However, the glutamatergic LNs that are ventral to the AL (Das
et al., 2011) also project into the AL through the ventral AL fascicle (see Supplementary
Information Fig. S2). Therefore, we defined every non-glutamatergic neuron with a soma
ventral to the AL that projects into the AL through the ventral AL fascicle as a vPN.
Previous reports have identified ~51 vPNs; ~45 vPNs labeled by MZ699-GAL4 (Lai et al.,
2008) and 6 labeled by GH146-GAL4 (Wilson and Laurent, 2005). In terms of transmitter
content, ~36 vVPNs are GABAergic based on vPNs expressed by GH146-GAL4 (Jefferis
etal., 2007) and MZ699-GAL4 (Liang et al., 2013), and while cholinergic vPNs have been
described (Yasuyama et al., 2003), the number of cholinergic vPNs has not been
quantified.

Within the vPNs, there are subsets of cells that express each of the 5-HTRs,
although the total number of vVPNs expressing each receptor did vary between receptor
types (Fig. 4). Furthermore, each 5-HTR is expressed by a combination of GABAergic
and cholinergic vPNs. The two 5-HT1 type receptors are similarly expressed within the
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VPNs. 5-HT1A is expressed by 21.70 £ 1.10 (n* = 3 transgenic lines, n = 18—-22 brains per
line) vPNs, of which 13.84 £ 1.14 are GABAergic and 7.87 + 0.36 are cholinergic (Fig. 4a—
c), while 5-HT1B is expressed by 25.33 £1.02 (n = 18) vPNs, of which 15.5+1.02 (n=9)
are GABAergic and 9.83 + 1.13 (n = 9) are cholinergic (Fig. 4d—f). The 5-HT2A is the least
widely expressed receptor within the vPNs, with only 6.73 £ 0.75 (n =22) vPNs, of which
2.95+0.40 (n=11) are GABAergic and 3.77 £0.69 (n=11) are cholinergic (Fig. 4g—i).
Finally, 5-HT2B and 5-HT7 are expressed in similar numbers of vPNs to the 5-HT1 type
receptors. The 5-HT2B is expressed by 19.81 £ 1.30 (n* = 2 transgenic lines, n=20 and
25 brains per line) vPNs, of which 12.33+1.03 are GABAergic and 7.47 £0.75 are
cholinergic (Fig. 4j—I). Similarly, 5-HT7 is expressed by 23.55+1.13 (n=19) vPNs, of
which 16.67£2.0 (n=6) are GABAergic and 6.88 £0.52 (n=13) are cholinergic (Fig.
4m-o0). These results suggest that while 5-HT likely has a widespread effect on vPNs,
these effects will be heterogeneous as both excitatory and inhibitory 5-HTRs are
expressed by both GABAergic and cholinergic vPNs. Moreover, when combined with the
observed diversity in 5-HTR expression, these results suggest that the vPN neuronal

class is likely more diverse than previously described.

Distinct Populations of LNs express 5-HTRs

The majority of GABAergic cell bodies within the lateral neuroblast cluster are LNs.
However, there have been reports of a small number (~1-2) of GABAergic latPNs (Okada
et al., 2009). Our approach could not objectively distinguish a GABAergic LN from a
GABAergic latPN. Therefore, we make the assumption that GABAergic cell bodies in the
lateral cell cluster are likely LNs, knowing that there are a small number of GABAergic
latPNs (Okada et al., 2009). However, there is a small subset of cholinergic LNs
ventrolateral to the AL that are easily discernable, based on soma size, from cholinergic
PNs (Yaksi and Wilson, 2010). There are ~200 LNs within the AL (Stocker et al., 1990)
that express a diverse array of transmitters (Chou et al., 2010) including glutamate (Das
et al., 2011) and neuropeptides such as tachykinin (TKK) and myoinhibitory peptide (MIP)
(Ignell et al., 2009; Carlsson et al., 2010), and vary in their synaptic connectivity with other
AL neuron classes (Root et al., 2008; Huang et al., 2010; Olsen et al., 2010; Yaksi and
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Wilson, 2010).

Distinct subcategories of LNs, based on transmitter content, express distinct 5-
HTRs (Fig. 5). The 5-HT1A is expressed by 13.63 £ 0.55 (n* = 3 transgenic lines, n = 17—
18 brains per line) lateral LNs (Fig. 5a) whose cell bodies are consistently located in close
proximity to the AL. Of these LNs, 12.40 £ 0.86 are GABAergic (Fig. 5b). In addition, a
significant proportion of the 5-HT1A expressing LNs are peptidergic, with 8.62 £ 0.01 LNs
expressing MIP (Fig. 5¢) and 7.00 + 0.26 expressing TKK (Fig. 5d). The 5-HT2A receptor
is expressed by a smaller number of lateral LNs (4.27 £0.96, n=11) relative to the 5-
HT1A LNs (Fig. 5e). Of these, 3.73+0.81 (n=11) are GABAergic (Fig. 5f), 1.14+£0.10
(n=11) are cholinergic (Fig. 5g), and none of the 5-HT2A LNs were TKKinergic (Fig. 5h).
The 5-HT2B expressing lateral LNs (Fig. 5i), of which there are 12.42+0.93 (n*=2
transgenic lines, n=25 and 20 brains per line), are primarily GABAergic
(10.12 £ 0.78; Fig. 5j), although 2.30 + 0.15 are cholinergic (Fig. 5k), and roughly a single
(0.87 £0.68) TKKinergic LN (Fig. 5l1). Finally, the 5-HT7 receptor is also expressed by
lateral LNs (Fig. 5m; 12.19+0.71, n = 16) which are predominantly GABAergic (Fig. 5n;
11.25+0.69, n=8), although a small number (4.64+0.21, n=7) are MIPergic (Fig.
50) and 1.72+£0.15 (n =9) TKKinergic (Fig. 5p).

To assess 5-HTR expression within the glutamatergic LNs that are ventral to the
AL (Das et al., 2011), we performed RFP-GFP dual-expression experiments. In these
cases, a Trojan-LexA::QFAD protein-trap line for vesicular glutamate transporter (VGlut)
was used to produce GFP in all cells that produce VGlut (Diao et al., 2015),
simultaneously RFP is produced in all cells that produce a given 5-HTR via the T2A-GAL4
5-HTR driver (Fig. 6a). The 5-HT1A is expressed by 7.75+0.43 (n* = 5-HT1A1468T2A-G4
n=10 brains) glutamatergic LNs (Fig. 6b). Similarly, the 5-HT1B is expressed by
6.89+0.48 (n=9 brains) glutamatergic LNs (Fig. 6¢). The 5-HT2A is expressed by
3.72+0.19 (n=9 brains) glutamatergic LNs (Fig. 6d), while 5-HT2B is expressed by
9.75+0.40 (n* = 5-HT2B%208-T2A-G4 'n =10 brains) glutamatergic LNs (Fig. 6e). Finally, 5-
HT7 is expressed by 9.50 + 0.54 (n = 8 brains) glutamatergic LNs (Fig. 6f).
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DISCUSSION

Neuromodulators often act through diverse sets of receptors expressed by distinct
network elements and in this manner, differentially affect specific features of network
dynamics. Knowing which network elements express each receptor for a given
neuromodulator provides a framework for making predictions about the mechanistic basis
by which a neuromodulator alters network activity. In this study, we provide an “atlas” of
5-HTR expression within the AL of Drosophila, thus revealing network elements subject
to the different effects of serotonergic modulation. In summary, we find that different
receptors are predominantly expressed by distinct neuronal populations (Fig. 7a—d). For
example, the 5-HT2B is expressed by OSNs (Fig. 7a), while the 5-HT2A and 7 are
expressed by cholinergic PNs (Fig. 7b). Additionally, we find that each receptor is
expressed by diverse populations of LNs, with the exception the 5-HT1B. For instance,
5-HT1A is expressed by GABAergic and peptidergic (TKK and MIP) LNs, while 5-HT2A
and 2B are not expressed by peptidergic LNs (Fig. 7d). However, the vPNs are the
exception to the general observation that distinct neuronal classes differ from each other
in the 5-HTRs (Fig. 7c) and we discuss the implications of this below. Together, our
results suggest that within the AL, 5-HT differentially modulates distinct populations of
neurons that undertake specific tasks in olfactory processing.

A recurring theme of neuromodulation is that the expression of distinct receptor
types by specific neural populations allows a single modulatory neuron to differentially
affect individual coding features. For instance, GABAergic medium spiny neurons (MSNs)
in the nucleus accumbens express either the D1 or D2 dopamine receptor allowing
dopamine to have opposite effects on different MSNSs via coupling to different G4 subunits
[reviewed in (Russo and Nestler, 2013)]. MSNs that differ in dopamine receptor
expression also differ in their synaptic connectivity. Dopamine activates D1-expressing
MSNs that directly inhibit dopaminergic neurons in the ventral tegmental area (VTA), and
inhibits D2-expressing MSNs that inhibit GABAergic VTA interneurons thus inducing
suppression of dopamine release. In this manner, a single neuromodulator differentially
affects two populations of principal neurons via different receptors to generate
coordinated network output. This principle also holds true for the effects of 5-HT within
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the olfactory bulb. For instance, 5-HT enhances presynaptic inhibition of olfactory sensory
neurons by 5-HT2C-expressing juxtaglomerular cells (Petzold et al., 2009), while
increasing excitatory drive to mitral/tufted cells and periglomerular cells via 5-HT2A-
expressing external tufted cells (Liu et al., 2012). Similarly, we observed that distinct
classes of AL neurons differ in their expression of 5-HTRs. For instance, ePNs express
the 5-HT2A, 5-HT2B and 5-HT7 receptors (Fig. 3), while peptidergic LNs predominantly
express the 5-HT1A receptor (Fig. 5¢, d). This suggests that the cumulative effect of 5-
HT results from a combination of differential modulation across neuronal populations
within the AL.

Interestingly, although we find that 5-HT2B is expressed by OSNs, previous
reports found that 5-HT does not directly affect Drosophila OSNs (Dacks et al., 2009). In
this study, OSNs were stimulated using antennal nerve shock in which the antennae were
removed in order to place the antennal nerve within a suction electrode (Dacks et al.,
2009). Thus, if 5-HT2B is localized to the OSN cell body, removal of the antennae would
eliminate any effect of 5-HT on OSNSs. In several insects, 5-HT within the antennal
haemolymph modulates OSN odor-evoked responses (Dolzer et al., 2001; Grosmaitre et
al., 2001). Therefore, it is plausible OSNs are modulated by a source of 5-HT other than
the CSD neurons within the AL.

Serotonergic modulation of LN activity has widespread, and sometimes odor
specific, effects on olfactory processing. LNs allow ongoing activity across the AL to
shape the activity of individual AL neurons, often in a glomerulus specific manner creating
non-reciprocal relationships (Olsen et al., 2007; Root et al., 2008; Silbering et al., 2008;
Reisenman et al., 2011). It is fairly clear that 5-HT directly modulates LNs, although 5-HT
almost certainly affects synaptic input to LNs. Serotonin modulates isolated Manduca
sexta LNs in vitro (Mercer et al., 1995) and, consistent with our results, a small population
of GABAergic LNs in the AL of Manduca also express the 5-HT1A receptor (Dacks et al.,
2013). Furthermore, 5-HT has odor-dependent effects on PN odor-evoked activity (Dacks
et al., 2008, 2009), suggesting that odor specific sets of lateral interactions are modulated
by 5-HT. We found that different populations of LNs expressed different sets of 5-HT
receptors, however we categorized LNs based on transmitter type, so it is possible that
these categories could be even further sub-divided based on morphological type, synaptic
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connectivity or biophysical characteristics (Chou et al., 2010; Huang et al., 2010; Seki et
al., 2010; Yaksi and Wilson, 2010). Regardless, our results suggest that 5-HT modulates
lateral interactions within the AL by selectively affecting LN populations that undertake
different tasks. For instance, the TKKergic LNs that express the 5-HT1A receptor provide
a form of gain control by presynaptically inhibiting OSNs (Ignell et al., 2009). Our results
suggest that 5-HT may affect TKK mediated gain control differently relative to processes
undertaken by other LN populations. Furthermore, the expression of the TKK receptor by
OSNs is regulated by hunger, allowing the effects of TKK to vary with behavioral state
(Ko et al., 2015). It would be interesting to determine if the expression of 5-HTRs
themselves also vary with behavioral state as a means of regulating neuromodulation
within the olfactory system.

Although we primarily found that individual populations of AL neurons chiefly
expressed a single or perhaps two 5-HTR types, the vPNs appear to be an exception. As
a population, the vPNs express all of the 5-HTRs (Fig. 4) and the vPNs that express each
5-HTR did not appear to differ in terms of the proportion of those neurons that were
GABAergic or cholinergic (roughly 3:2). Unfortunately, our approach does not allow us to
determine the degree to which individual vPNs co-express 5-HTRs. However, it is
estimated that there are ~51 vPNs and even if this is an underestimate, there is likely
some overlap of receptor types as a large number of vPNs expressed the 5-HT1A, 1B,
2B and 7 receptors. It is possible that a single vPN expresses one 5-HTR in the AL and
a different 5-HTR in the lateral horn. However, our approach only allows us to identify
which neurons express a given 5-HTR, not where that receptor is expressed. The CSD
neurons ramify throughout both ALs and both lateral horns (Dacks et al., 2006; Roy et al.,
2007), thus vPNs could have differential spatial expression of individual 5-HTRs.
Individual neurons expressing multiple 5-HTRs has been demonstrated in several neural
networks. For instance, pyramidal cells in prefrontal cortex express both the 5-HT1A and
5-HT2A (Andrade, 2011). This allows 5-HT to have opposing effects that differ in their
time course in the same cell (Beique et al., 2004, Villalobos et al., 2005). In terms of the
VvPNs, our results suggest that the current understanding of the diversity of this neuron
class is limited. The expression of receptors for different signaling molecules could
potentially be a significant component to vPN diversity.
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Neuromodulators are often released by a small number of neurons within a
network, yet they can have extremely diverse effects depending upon patterns of receptor
expression. For the most part, individual populations of AL neurons differed in the
receptor types that they expressed. This suggests that 5-HT differentially acts on classes
of neurons that undertake distinct tasks in olfactory processing. In the case of the vPNs,
this differential modulation may be fairly complex due to the diversity within this neuronal
class. Our goal was to establish a functional atlas of 5-HTR expression in the AL
of Drosophila. This dataset therefore provides a mechanistic framework for the effects of

5-HT on olfactory processing in this network.

METHODS

Fly Stocks. Flies were maintained on standard cornmeal at 24°C and under a 12:12
light:dark cycle. MiMIC T2A-GAL4 protein- and gene-trap stocks were graciously provided
by Dr. H.A. Dierick and have been previously described (Gnerer et al., 2015). These
include: 5-HT1A-T2A-GAL4MI04464 - 5. HT1A-T2A-GAL4MI01140 " 5_HT1A-T2A-GAL4MI01468
5-HT1B-T2A-GAL4MI05213 5 HT2A-T2A-GAL4MI00459 " 5. HT2B-T2A-GAL4M05208 ' 5. HT2B-
T2A-GAL4MI08500  gnd 5-HT7-GAL4MI00215 Al 5-HT receptor protein-trap and gene-trap
lines were crossed to membrane-targeted UAS-IVS-mCD8::GFP (Pfeiffer et al., 2010)
(BL#32185). Dr. Tzumin Lee kindly provided the MZ699-GAL4 and GH146-LexA stocks
(Lai et al., 2008). The Trojan-LexA::QFAD VGlut protein-trap line (Diao et al., 2015)
(BL#60314) recombined with y, w,10xUAS-RFP, LexAop-GFP (BL#32229) was
generously provided by Dr. Quentin Gaudry.

Immunocytochemistry. Brains were dissected in Drosophila external saline (CSHL
recipe) fixed in 4% paraformaldehyde for 30 minutes on ice, washed with phosphate
buffered saline with 0.5% Triton-X 100 (PBST), and blocked for 1 hour in PBST with either
2% IgG-free BSA (Jackson Immunoresearch; Cat#001-000-162), or 5% NGS (for GABA
& ChAT labeling; Jackson Immunoresearch; Cat#005-000-121). In many instances, an
ascending-descending ethanol wash series (30%, 50%, 70%, 95%, 100%, 95%, 70%,
50%, and 30%) was used prior to blocking to clear air from residual trachea. Brains were
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incubated at 4°C in primary antibody diluted with blocking solution and 5mM sodium
azide. Primary antibody dilutions used include: 1:50 mouse anti-Bruchpilot [DSHB;
mAbnc82 (Wagh et al., 2006)], 1:500 rabbit anti-GABA (Sigma; Cat#A2052), 1:200
mouse anti-ChAT [DSHB; ChAT4B1 (Yasuyama et al., 1995)], 1:5,000 rabbit anti-TKK
[provided by Dr. Jan Veenstra; (Veenstra et al., 1995)], 1:4,000 rabbit anti-MIP [provided
by Dr. Christian Wegener; (Predel et al., 2001)], and 1:1,000 rabbit anti-GFP (Life
Technologies; Cat#A-11122). Brains were then washed in PBST, blocked as above, and
incubated at 4°C in secondary antibody diluted with blocking solution and 5mM sodium
azide. All secondary antibodies were purchased from Life Technologies and include: goat
anti-rabbit Alexa-488 (Cat#A-11008), donkey anti-rabbit Alexa-488 (Cat#A-21206),
donkey anti-mouse Alexa-546 (Cat#A-10036), goat anti-mouse Alexa-546 (Cat#A-
11030), goat anti-rabbit Alexa-633 (Cat#A-21070), and goat anti-mouse Alexa-633
(Cat#A-21050). Brains were then washed in PBST and PBS, then cleared via an
ascending glycerol series (40%, 60%, 80%), and finally mounted on well slides in
Vectashield® (Vector Laboratories, Burlingame, CA; Cat#H-1200).

Image Acquisition and Analysis. Brains were imaged using an Olympus BX61
(Shinjuku, Tokyo, Japan) confocal microscope running the Fluoview FV1000 software
with a 40x UPlanFL-N or 60x PlanApo-N oil-immersion objective. In some cases,
brightness and contrast were manually adjusted in Adobe Photoshop v.14.2 (San Jose,
CA). GFP-positive and additional primary labeled cell bodies were recorded in VAA3D
(v.3.20) (Peng et al., 2010). Anterodorsal, lateral, and ventral PN and LNs were defined
by cell body location (Lai et al., 2008) and, in the case of the lateral PNs and LNSs,

transmitter content.

OSN Ablations. To demonstrate that 5-HT2B is expressed in both antennae and
maxillary palp OSNs, the antennae, maxillary palps, or both were removed 4-5 hours
post-eclosion. Animals were kept under standard conditions and media until 10-days later
when they were processed for immunocytochemistry.

Statistical Analysis. All statistics were performed in GraphPad Prism v.5.01 (GraphPad
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Software, La Jolla, CA). For simplicity, we use the average of the averages for multiple
transgenic lines used for the same receptor (i.e., 5-HT1A and 5-HT2B) when reporting
results. In these cases, data are presented as mean of the mean of each individual line £
mean of the s.e.m of each individual line (n* = total number of transgenic lines for a
receptor, n = total number of brains for each transgenic line). All other data are presented
as mean = s.e.m (n = total number of brains). A D’Agostino and Pearson omnibus
normality test (a = 0.05) was used to confirm normal distribution of neuronal classes
highlighted between the multiple lines for 5-HT1A and 2B. A one-way ANOVA followed
by a Tukey’s multiple comparison test (a = 0.05) was used to test for significant
differences between the number of neurons within a neuronal class highlighted by the
different 5-HT1A T2A-GAL4 lines. An unpaired Student’s t-test (a = 0.05) was performed
to test for significant differences between the number of neurons within a neuron class
highlighted by the different 5-HT2B T2A-GAL4 lines for the same 5-HTR.
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Table 1 | 5-HTR MiMIC T2A-GAL4 transgenic lines used and the number of cells in
each cluster that express each receptor. With the exception of 5-HT7, our investigation
relies solely on MiMIC T2A-GAL4 protein-trap transgenics (PT). In all cases, the number
of cells in each cluster that express each receptor are represented as mean £ s.e.m. (n =
number of brains). Note that the total number of LNs that express a given 5-HTR line is
the total of the GABA, cholinergic (ChAT), and glutamatergic (Glut) LN columns, since
peptidergic LNs are also GABAergic. “PT” and “GT” describe which lines are protein-traps
and which are gene-trap, respectively. “N/Ap” denotes 5-HTR expressing neuron classes
that did not co-label for that given transmitter or expressed by that neuronal class. Dashes
(“-*) denote lines that were not tested for colabeling.
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Figure 1 | Consistent neuron labeling from different coding-intronic

insertions of 5-HTRs in the antennal lobe of Drosophila melanogaster.
(a) Olfactory receptor neurons (ORNSs; cyan) housed within the antennae and maxillary
palps (not depicted here) send axons to a single glomerulus in the antennal lobe (AL).
Within a glomerulus, ORNs synapse on projection neurons (PNs; green and orange)
and local interneurons (LNs; magenta). LNs interconnect glomeruli and synapse on
ORNSs, PNs, and other LNs. A given PN is classified as an anterodorsal PN (adPN;
green), lateral PN (latPN; green), or ventral PN (vPN; orange) based on its cell body
position. PN axons project to the mushroom body (MB) calyx (Ca) and lateral horn (LH).
Ellipses indicate neuron type, while circles indicate specific brain regions. (b-d) T2A-
GAL4 conversion of three separate MiMIC insertions (4464, 1140, and 1468,
respectively) in the 5-HT1A locus reveals consistent labeling of LNs and vPNs. (e and f)
T2A-GAL4 conversion of two separate MiMIC insertions (6500 and 5208, respectively)
in the 5-HT2B locus consistently labels ORNs. Neuropil in (b-f) are delineated by o-
Bruchpilot (a-Brp; magenta) labeling. All scale bars=20um.
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Figure 2 | 5-HT2B is expressed by antennae and maxillary

palp ORNSs. (a) Representative confocal stack of 5-HT2B expressing
ORN axons (green) crossing the AL commissure. (b) 5-HT2B expressing
ORN soma within the antennae. (c) 5-HT2B expressing ORN soma within
the maxillary palp. To confirm antennae and maxillary palp ORNs express
5-HT2B, one-day old adults' antennae (d), maxillary palp (e), or both (f)
were removed. Removal of either structure individually only partially
abolishes 5-HT2B ORN axons, while removal of both abolishes 5-HT2B
ORN axons. The white arrowhead in (a) and (d-f) highlights ORN axons
crossing the AL commissure. Neuropil in (a) and (f) are delineated by a-
Bruchpilot (a-Brp; magenta) labeling. All scale bars=20um.
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: ¥ Figure 3 | Excitatory
PNs express excitatory

serotonin receptors. (a)
Representative confocal stack
of 5-HT2A expressing lateral
4 projection neurons (latPNs;
green). (b) 5-HT2A
expressing latPNs also
colabel for choline
M acetyltransferase (ChAT,;
P28 magenta). (c) Representative
confocal stack of 5-HT7
expressing latPNs (green). (d)
5-HT7 expressing latPNs also
co-label for ChAT (magenta).
B (e) Representative confocal
I stack of 5-HT2B expressing
latPNs (green). (f) Lateral
PNs that express 5-HT2B also
co-label for ChAT (magenta).
(g) 5-HT7 expressing
anterodorsal projection
neurons (adPNs; green). (h)
5-HT7 expressing adPNs co-
label for ChAT (magenta). (i)
5-HT2B expressing adPNs
(green). (j) Anterodorsal PNs
that express 5-HT2B also co-
label for ChAT (magenta).
Neuropil in (a), (c), (e), (9),
and (i) are delineated by a-
Bruchpilot (a-Brp; magenta)
labeling. All scale bars=10um.
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GFP

5-HT7 5-HT7*“">GF 5-HT7"*">G .
Figure 4 | Ventral PNs express each serotonin receptor. (a) 5-HT1Ais
expressed by VPNs (green). (b) 5-HT1A expressing vPNs (green) colabel for GABA
(magenta). (c¢) 5-HT1A expressing VPNs colabel for choline acetyltransferase (ChAT;
magenta). (d) 5-HT1B is expressed by vPNs (green). (e) 5-HT1B expressing vPNs (green)
colabel for GABA (magenta). (f) 5-HT1B expressing vPNs colabel for ChAT (magenta). (g)
5-HT2Ais expressed by vPNs (green). (h) 5-HT2A vPNs (green) colabel for GABA
(magenta). (i) 5-HT2A vPNs (green) colabel for ChAT (magenta). (j) 5-HT2B expressing
VvPNs (green). (k) 5-HT2B vPNs (green) colabel for GABA (magenta). (I) 5-HT2B vPNs
(green) colabel ChAT (magenta). (m) vPNs that express 5-HT7 (green). (n) 5-HT7 vPNs
(green) co-label for GABA (magenta). (0) 5-HT7 vPNs (green) colabel for ChAT (magenta).
Regions of neuropil in (a), (d), (g), (j) and (m) are delineated by a-Bruchpilot (a-Brp;
magenta) labeling. All scale bars=10um.
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Figure 5 | 5-HTRs are expressed by distinct populations of local

interneurons. (a) Local interneurons (LNs) that express 5-HT1A. (b) 5-HT1A LNs
(green) colabel for GABA (magenta). (c) 5-HT1A LNs (green) colabel for myoinhibitory
peptide (MIP; cyan). (d) 5-HT1A LNs colabel for tachykinin (TKK; cyan). (e) 5-HT2A
expressing LNs (green). (f) 5-HT2A LNs (green) colabel for GABA (magenta). (g)
Cholinergic LNs (ChAT; magenta) express 5-HT2A. (h) 5-HT2A (green) is not expressed
by any TKKinergic LN (cyan). (i) LNs that express 5-HT2B. (j) 5-HT2B LNs (green) colabel
for GABA (magenta). (k) Cholinergic LNs (ChAT; magenta) express 5-HT2B. (l) 5-HT2B
(green) is expressed by TKKinergic LNs (cyan). (m) 5-HT7 expressing LNs. (n) 5-HT7 LNs
colabel for GABA (magenta). (o) 5-HT7 LNs colabel for MIP (cyan). (p) 5-HT7 LNs colabel
for TKK (cyan). Neuropil in (a), (c-e), (i), (I), (m), and (o-p) are delineated by a-Bruchpilot
(a-Brp; magenta) labeling. All scale bars=10um.
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Figure 6 | Glutamatergic LNs express each 5-

HTR. (a) Schematic of approach used to determine 5-HTR
expression within glutamatergic LNs. We used a Trojan T2A-
LexA::QFAD protein-trap line for vesicular glutamate
transporter (VGlut) to drive the expression of GFP (green) in
every glutamatergic neuron. Within the same animal, RFP
(magenta) is produced in every neuron that produces a given
5-HTR, depending on the 5-HTR T2A-GAL4 line used. Both
GFP and RFP (white) is produced in glutamatergic neurons
that express a given 5-HTR. (b) Glutamatergic LNs (green)
that co-express the 5-HT1A (magenta). (¢) Glutamatergic
LNs (green) that co-express the 5-HT1B (magenta). (d)
Glutamatergic LNs (green) that co-express the 5-HT2A
(magenta). (e) Glutamatergic LNs (green) that co-express
the 5-HT2B (magenta). (f) Glutamatergic LNs (green) that
co-express the 5-HT7 (magenta). All scale bars=10um.
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Figure 7 | Serotonin targets distinct network

elements within the AL. (a) ORNSs (blue) within the
antennae and maxillary palps express 5-HT2B. (b) Excitatory
PNs (ePNs) in the lateral (latPNs; dark green) and
anterodorsal (adPNs; lime green) clusters express 5-HT2A
and 5-HT7, respectively. In all cases, the pie chart diameter
represents the total number of ePNs that express a given 5-
HTR, and is divided by the relative number of latPNs (dark
green slices) and adPNs (lime green slices) that express a
given 5-HTR. (¢) Inhibitory ventral PNs (i-vPN; orange) and
excitatory ventral PNs (e-vPN; green) express all 5-HTRs. In
all cases, the pie chart diameter represents the total number
of vPNs that express a given 5-HTR. Moreover, each pie
chart is divided by the relative number of i-vPNs (orange
slices) and e-vPNs (green slices) that express a given 5-
HTR. (d) GABAergic local interneurons (i-LN; orange)
express all 5-HTRs. Cholinergic LNs (e-LN; green) express
5-HT2A and 2B. Peptidergic LNs (PepLN; purple) express 5-
HT1A and 5-HT7. Glutamatergic LNs (GlutLN; pink) express
all 5-HTRs.

GlutLN
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Supplementary Figure 1 | Different
coding-intronic insertion drivers for the

same locus label similar neurons. (a)
Number of latPNs, adPNs, GABAergic vPNs,
cholinergic vPNs, TKKinergic LNs, and MIPergic
LNs highlighted by each T2A-GAL4 line for 5-
HT1A. Data were compared using a 1-Way
ANOVA followed by a Tukey’s Multiple
Comparison Test (a = 0.05). (b) Number of
latPNs, adPNs, GABAergic vPNs, cholinergic
vPNs, TKKinergic LNs, and cholinergic LNs
highlighted by each T2A-GAL4 line for 5-HT2B.
The difference between the number of TKKinergic
LNs highlighted by these two lines is one neuron.
The number of glutamatergic LNs labeled by
each transgenic line was not tested. Data were
compared using an unpaired Student’s t-test (a =
0.05). In all graphs, error bars are s.e.m. *p <
0.05; **p < 0.005; ***p < 0.0005.
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Supplementary Figure 2 | vPNs and glutamatergic LNs enter

the AL through the ventral AL fascicle. (a) Representative confocal
stack of the MZ699 enhancer-trap GAL4, GH146 enhancer-trap LexA, and a
T2A-LexA::QFAD protein-trap line for the vesicular glutamate transporter
(VGlut) driving the expression of GFP (green). MZ699-GAL4 and GH146-LexA
ventral PNs, as well as glutamatergic LNs, project into the AL through the
ventral AL fascicle. (b) Representative confocal stack of the T2A-GAL4 MiIMIC
5-HTR lines driving the expression of GFP (green). Similar to the neurites of
MZ699-GAL4, GH146-LexA, and VGlut** ™" 5. HTR expressing ventral
neurons enter the AL through the ventral AL fascicle. In all cases, the white
arrowhead demarcates the ventral AL fascicle. Neuropil is delineated by a-
Bruchpilot (a-Brp; magenta) labeling. All scale bars=10um.
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CHAPTER 3

A Peptidergic Pathway for Olfactory Gain Control
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ABSTRACT

Detection of food-associated odors is a fundamental action of all olfactory systems.
However, properly detecting and encoding food-associated odors likely represents only
a portion of all of the odors an animal needs to detect and encode. Moreover, there are
times when the animal’s need to detect and process odors that are not associated with
food far outweigh the need to detect and process food odors (e.g., when the animal
encounters the scent of a predator). Such shifts between what stimuli are pertinent to the
animal’s ongoing needs reflect shifts in neural circuit operations, such that circuit nodes
dedicated to detecting and processing one stimulus are downregulated while others are
upregulated. To accomplish this, nervous systems typically use neuromodulators to
modulate individual neural circuit nodes according to the animal’s external demands or
internal needs. Neuropeptides are one such class of neuromodulators used across
diverse modalities in disparate taxa to transform neural network processing according to
such internal demands as satiation state. However, neuropeptides remain severely
understudied relative to their classic, smaller, neurotransmitter counterparts. Here, we
reveal a novel peptidergic signaling pathway in the highly-tractable Drosophila antennal
lobe (AL) that modulates the gain of olfactory input to several food-odor associated
channels. More specifically, we show that the neuropeptide myoinhibitory peptide (MIP)
is released by GABAergic LNs, which through electron microscopy (EM)-level analyses
we show form many reciprocal connections with principal AL neurons across glomeruli.
We determine which these downstream targets express the MIP receptor (sex peptide
receptor, or SPR), and show that MIP-SPR signaling modulates the gain of OSN input to
several key food-odor processing glomeruli. Previous behavioral analyses found animals
lacking MIP display significantly greater behavioral attraction to food-odors (Min et al.,
2016). Therefore, taken together with our results, this suggests MIPergic AL LNs
represent one of likely several neural substrates that underly the animal’s switch in
satiety-state driven behaviors.
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INTRODUCTION

Neuropeptides are the largest and most diverse collection of signaling molecules
found across Holozoa, and are thought to have arisen at least ~3.5bya with the last
unicellular ancestor to all metazoans (Katsukura et al., 2004; Golubovic et al., 2007; Kass-
Simon and Pierobon, 2007; Watanabe et al., 2009; Nassel and Winther, 2010;
Conzelmann et al., 2011; Donaldson et al., 2013; Smith et al., 2014; Takahashi and
Takeda, 2015; Nassel et al., 2019; Zieger et al., 2021; Moroz et al., 2021). As such, it is
perhaps unsurprising that recent investigations across disparate taxa have discovered
neuropeptidergic signaling plays a fundamental role in nervous system function and
plasticity (Yapici et al., 2014; Kim et al., 2017; Nassel and Zandawala, 2019; Flavell et
al., 2020; Liessem et al., 2021). For instance, neuropeptide F (NPF) and its vertebrate
counterpart neuropeptide Y (NPY) play a conserved role in promoting feeding behaviors
in humans, flies, nematodes, mosquitoes, Aplysia and rodents (De Bono and Bargmann,
1998; Inui, 1999; Wu et al., 2005; Jing et al., 2007; van den Pol, 2012; Maeda et al., 2015;
Ohno et al., 2017; Duvall et al.,, 2019). However, the circuit logic and mechanistic
understanding of neuropeptidergic modulation remains largely elusive within most
sensory modalities. This is further confounded by limited reagents to label neuropeptides
and their receptors, genetic inaccessibility to manipulate neuropeptide signaling, and
unresolved circuit connectivity of most sensory networks.

The Drosophila AL is an attractive platform for exploring peptidergic sensory
modulation because: (1) many neuropeptides are present in the Drosophila AL (Carlsson
et al., 2010); (2) the circuit architecture and physiologies of the underlying circuitry are
well-characterized (Wilson, 2013; Joseph and Carlson, 2015; Bates et al.,, 2020b;
Clements et al., 2020; Scheffer et al., 2020; Schlegel et al., 2021); and, (3) the behavioral
consequences of activating individual olfactory channels and “odor valence” have been
well studied (Semmelhack and Wang, 2009; Knaden et al., 2012; Bell and Wilson, 2016).
The AL circuit is comprised of several glomeruli (or, “microcircuits”) wherein olfactory
sensory neurons (OSNSs) that express distinct chemosensory receptors form excitatory
synapses with projection neurons (PNs) and local interneurons (LNs) (Wilson, 2013;
Joseph and Carlson, 2015; Schmidt and Benton, 2020; Task et al., 2020). Amongst this
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circuitry are several principal and centrifugal neurons that release the neuropeptides
tachykinin (TKK), short neuropeptide F (sNPF), myoinhibitory peptide (MIP), SIFamide,
allatostatin A, IPNamide, and myosuppressin (Carlsson et al., 2010). More recently, TKK
and sNPF were found to be released by LNs and OSNs (respectively), and each plays a
distinct role in an antagonistic signaling pathway which adjusts AL processing based on
the animal’s current satiation state (Winther et al., 2006; Ignell et al., 2009; Root et al.,
2011; Ko et al., 2015). Similarly, MIP signaling was found to be necessary and sufficient
to stimulate the fly’s drive towards food-odors (Min et al., 2016).

Previous experiments found that blocking all MIP transmission enhances attraction
towards food-odors, while increasing MIP transmission induces strong aversion towards
food-odors (Min et al., 2016). These results suggest MIP signaling controls the animal’s
sensitivity to food-associated odors and drive to search for food. However, the MIPergic
neurons responsible for this switch in odor-evoked behavior were not identified. The most
parsimonious explanation would be that MIP signaling from neurons closely associated
with the olfactory system underlies this switch in food-odor preference. Indeed, there are
MIP-immunoreactive (MIP-ir) neurons in the AL (see above), but what type of neuron(s)
(LNs, PNs, centrifugal neurons) release MIP in the AL? Do these MIP-ir neurons connect
to neurons involved with food-odor associated glomeruli? Do MIP-ir neurons respond to
food associated odors directly, or are they responsive to other stimuli that then impinges
on the response to food-odors? And, ultimately, does MIP modulate the activity of
principal neurons responsible for processing food-odors?

To answer these questions, we first set out to determine which AL principal
neurons express MIP, then we leverage transgenic light-microscopy and EM-level data
to determine how MIP-ir neurons connect with other AL neurons. We find that MIP is
released by patchy GABAergic LNs, which as individual neurons innervate a different
compliment of glomeruli from animal-to-animal but innervate all glomeruli across all
animals. Additionally, we used MIPergic LN directed synaptic polarity transgenic markers,
as well as the densely reconstructed hemibrain EM volume (Clements et al., 2020;
Scheffer et al., 2020), to determine the connectivity of these MIPergic LNs across the AL.
We find MIPergic LNs broadly connect to and receive input from a vast array of AL

principal neurons, and form all-to-all inhibitory connections amongst each other. We, then
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tested MIPergic LN odor-evoked responses to a panel of diverse odorants, and find
MIPergic LNs are consistently and robustly activated by the food-associated odor apple
cider vinegar (ACV). Moreover, we find that the MIP receptor (sex peptide receptor, or
SPR)is expressed by OSNs, PNs, and a handful of two different inhibitory LN populations.
More specifically, we find SPR is expressed by food-odor associated OSNs and that MIP
application reduces the odor-evoked responses in most food-odor associated olfactory
channels. Of particular note, we find MIP decreases DM1 OSN responses, which have
been shown to be necessary and sufficient for the animal’s ability to initiate an attractive
olfactory behavioral response (Semmelhack and Wang, 2009; Bell and Wilson, 2016).
Together, our results - and those of earlier behavioral experiments (Min et al., 2016) -
provide the neural substrates and modulatory mechanisms that likely contributes to the

animal’s overall shift in behaviors under starved or satiated states.

RESULTS
Patchy GABAergic LNs release MIP within the AL

Previous work found that the varicosities of the AL-associated MIPergic neurons
are restricted to the AL, which suggests MIP is released from AL LNs (Carlsson et al.,
2010). However, there are ~200 LNs in the Drosophila AL, whose distinct roles in AL
olfactory processing have been associated to their small-neurotransmitter identity and
morphology (Wilson and Laurent, 2005; Olsen et al., 2007; Root et al., 2008; Ignell et al.,
2009; Okada et al., 2009; Chou et al., 2010; Yaksi and Wilson, 2010; Seki et al., 2010;
Das et al., 2011; Ko et al., 2015; Schlegel et al., 2021). For example, the cholinergic LNs
innervate many glomeruli and perform lateral excitation to broaden odor representations
in the AL (Huang et al., 2010; Yaksi and Wilson, 2010). Thus, determining the small-
neurotransmitter identity of MIP-ir AL neurons can shed light on what functional role MIP-
ir LNs likely play in AL olfactory processing. To do so, we used recently established
protein-trap transgenics that have been shown to couple the production of a gene-of-
interest to the expression of a binary expression factor (Diao et al., 2015; Gnerer et al.,
2015; Lee et al., 2018; Deng et al.,, 2019; Task et al., 2020). More specifically, we

determined the overlap of MIP-immunoreactivity with choline acetyltransferase (ChAT; a
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proxy for cholinergic neurons), glutamic acid decarboxylase 1 (GAD1; a proxy for
GABAergic neurons), and vesicular glutamate transporter (VGlut; a proxy for
glutamatergic neurons) Trojan LexA driven GFP (Figure 1A and Figure S1). We find that
no AL MIP-ir neurons overlap with ChAT or VGlut Trojan LexA, but all MIP-ir neurons in
the AL overlap with the GAD1 Trojan LexA (9.1 = 0.19 neurons, n = 5) (Figure 1A). In
accordance with RNA-sequencing results (Menuz et al., 2014; Mohapatra and Menuz,
2019; McLaughlin et al., 2021), we find no detectable MIP-immunoreactivity in the third-
antennal segment, nor maxillary palps (data not shown). We also find that MIP-
immunoreactivity within the CNS primarily colabels with the VGlut Trojan LexA (Figure
S$1), in agreement with recent single-cell RNA sequencing (scRNA-seq) data (Croset et
al., 2018). Altogether, our results and those of previous reports (Carlsson et al., 2010)
suggest MIP is released from GABAergic LNs within the Drosophila AL.

The Drosophila AL houses a variety of distinct GABAergic LNs, which can be
subdivided into five major morphological types: panglomerular, multiglomerular,
oligoglomerular, continuous, and patchy (Chou et al., 2010). Aside from their distinct
morphological characteristics, these different interneuron morphological types play
distinct roles in olfactory processing in the AL, not unlike cortical interneurons (Gupta et
al., 2000; Markram et al., 2004). To determine the morphological type(s) of neurons that
release MIP within the AL, we first visually screened ~6,000 driver lines (Jenett et al.,
2012), manually screened ~25 of those lines for MIP-immunoreactivity in-house, and
identified a GAL4 driver (R32F10-GAL4) that selectively highlights the MIPergic LNs
(Figure 1B and Figure 1C). We then combined this driver and the MultiColor FlpOut
(MCFO) (Nern et al., 2015) method for stochastically labeling individual neurons, which
revealed that all MIPergic LNs have a discontinuous innervation pattern that resemble
LNs of the patchy subtype (Figure 1D).

There are many AL neurons, including other LNs, whose discontinuous
morphology could seem like patchy LNs but are not (Chou et al., 2010). However,
individual patchy LNs are unique in that they are the only AL LNs known to innervate
different sets of glomeruli from animal-to-animal (Chou et al., 2010). For example,
previous reports found 161 different innervation patterns for 161 patchy LN clones (Chou
et al., 2010). Therefore, to determine if any LN is truly of the patchy subtype one must
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determine if the given LN projects to a different repertoire of glomeruli from animal-to-
animal. To determine if MIPergic LNs are bonafide patchy LNs we analyzed the set of
glomeruli innervated by 50 individual MIPergic LNs (Figure 1E). If MIPergic LNs were not
patchy LNs, or if MIPergic LNs were restricted to certain glomeruli because they release
a neuropeptide (a relatively specialized transmitter), we would expect to see several
distinct combinations of glomeruli innervated by individual MIPergic LNs across animals.
However, we find that no individual MIPergic LN innervates the same set of glomeruli
across animals (Figure 1E and Figure S2 & S3); of the 50 clones analyzed we observed
50 different innervation patterns. Additionally, we find individual MIPergic LNs do not
preferentially innervate any one glomerulus over others (Figure S2A). We find individual
MIPergic LNs also do not preferentially innervate glomeruli based on the glomerulus’
reported hedonic valence (Figure S2B), nor do they target glomeruli tuned to particular
odorant functional groups (Figure S2C). Principal components analysis (PCA) of these
glomerular innervation data reveals that no individual glomerulus’ innervation pattern
could explain a large portion of the overall variance. Here, a total of 15/46 principal
components are required to explain ~75% of the variance in the data, where PC1 and
PC2 account for only 8.7% and 7.8%, respectively (Figure S2D). Interestingly, when
sister clones were assessed, we found that two individual MIPergic LNs tend to co-
innervate ~12 glomeruli on average (n = 5 brains, 5 sister clones) (Figure S3A & B), and
individual MIPergic LNs consistently innervated at least one of the hygro-/thermosensory
associated glomeruli (Gallio et al., 2011; Frank et al., 2017; Marin et al., 2020) (Figure
S3C-E). If we extrapolate, these results suggest that at least two MIPergic LNs innervate
any single glomerulus, including the hygro-/thermosensory domains. Altogether, these
observations confirm that MIPergic LNs are indeed patchy LNs, and also suggests that
specialized modulatory neurons can have heterogeneity and variability built-into their
morphology.

Very few monomolecular odors activate a single glomerulus (Hallem and Carlson,
2006; Silbering et al., 2008; Semmelhack and Wang, 2009; Haddad et al., 2010). Thus,
if individual MIPergic LNs innervate different sets of glomeruli from animal-to-animal,
might there be pairs of glomeruli that are innervated significantly more than other pairs?

And, if so, what ecological relationships exist amongst significantly correlated pairs of
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glomeruli? Correlation analysis between pairs of glomeruli (Figure 1F) revealed several
statistically significant relationships, of which the most significant pairs were DM3-D (r =
0.49, p = 2.7 x 10*) and VL2p-VAG6 (r = -0.47, p = 4.9 x 10). The significant likelihood
that when a MIPergic LN innervates DM3 it also innervates D is interesting as both
glomeruli’'s cognate ORs respond to volatiles produced by yeast to attract and defend
Drosophila from infectious bacteria (Carrau et al., 2005; Sokovicx et al., 2010; Liu et al.,
2012; Mathew et al., 2013; Mansourian and Stensmyr, 2015; Federman et al., 2016). By
co-innervating DM3 and D, MIPergic LNs may act to reduce the probability attractive
behavioral responses are inappropriately initiated when these stimuli are absent (i.e.,
“false positive” behavioral reaction). This supposition is supported by two-choice assay
results in which inactivation and rescue of nearly every MIP neuron’s activity is necessary
and sufficient for constraining behavioral attraction to yeast paste (Min et al., 2016). For
similar reasons, the significant probability that when a MIPergic LN innervates VL2p it is
less likely to innervate VAG is intriguing. These glomeruli respond to several attractive
volatiles that emanate from ripening fruit where yeast growth is prosperous (Mansourian
and Stensmyr, 2015), and output from these glomeruli converge onto similar 3™-order
lateral horn neurons (LHNs) (Jeanne et al., 2018). The integration of output from these
glomeruli at the level of these LHNs has been proposed to signal aggregation and/or
courtship near food sources (Jeanne et al., 2018). Therefore, it is interesting that a given
MIPergic LN that innervates VL2p is statistically unlikely to innervate VA6, as this
increases the risk for output from these glomeruli becoming decorrelated. Perhaps, the
signals derived from VL2p output generally indicate the presence of fermentation
volatiles, while VA6 output contextualizes the specific ripening fruit where these
fermentation signals originate. However, this supposition seems less likely as the
olfactory receptor expressed by VAG afferents (OR85b) is broadly tuned to acetate esters
(Hallem and Carlson, 2006; Christiaens et al., 2014). In addition to DM3-D and VL2p-
VAG, this analysis also revealed a significant probability for MIPergic LN co-innervation
amongst several pairs of glomeruli responsive to the innately attractive odor apple cider
vinegar (ACV) (Semmelhack and Wang, 2009), such as VM2-DM1 (r = 0.35, p = 0.01),
DM4-DM2 (r=0.31, p=0.03), and DP1m-DM1 (r = 0.29, p = 0.04). These results indicate
that the MIPergic LNs might play a vital role in modulating the balance of activity in ACV-
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responsive glomeruli.

MiPergic LNs Provide and Receive Broad Input and Output Across the AL

While no individual MIPergic LN innervates the same set of glomeruli from animal-
to-animal (Figure 2A), every glomerulus is innervated by at least one MIPergic LN across
all animals (Figure 2B). However, are the MIPergic ensemble’s pre-/post-synaptic sites
equally distributed, or are there certain olfactory channels this ensemble preferentially
modulates and/or receives input from (Figure 2C)? To answer this, we first drove the
expression of the dendritic marker DenMark (Nicolai et al., 2010), the axonal marker
synaptotagmin.eGFP (syt.eGFP) (Zhang et al., 2002), and mCD8::GFP in MIPergic LNs,
and measured their respective density in each glomerulus (Figure 2D and Figure 2E).
Additionally, we analyzed anti-MIP immunoreactive puncta density within each
glomerulus as a more directed means of determining which glomeruli are preferential
targets of MIPergic modulation (Figure 2E). We find that the density of each indicator
varies across glomeruli but are stereotypic across samples (Figure 2E and Figure S4).
The density of both output indicators (syt.eGFP and MIP-immunoreactive puncta) were
statistically correlated, and nearly every indicator scaled with MIPergic LN cable density
within a given glomerulus (Figure S4). However, DenMark density did not scale with
MIPergic LN cable density, likely owing to the indicator’s tendency to concentrate within
somata.

These puncta analyses afford the advantages of analyzing MIPergic LN synaptic
polarity across many individuals of both sexes and are definitively restricted to MIPergic
LNs. However, traditional light microscopy is limited by its ability to resolve fine structures
such as axons/dendrites, and the polarity marker effectors used here often do not fully
resolve a neuron’s dendrites/axons (e.g., Figure S4) (Schlegel et al.,, 2017;
Meinertzhagen, 2018). Therefore, we sought to perform similar analyses on individual
putative MIPergic LNs (putMIP LNs) within the densely reconstructed hemibrain electron
microscopy volume (Clements et al., 2020; Scheffer et al., 2020). More specifically, we
analyzed individual putMIP LN connectivity to answer: (1) which glomeruli receive

more/less input from putMIP LNs, and therefore which glomeruli are more/less likely
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targeted by MIPergic modulation? (2) what neurons are upstream/downstream of putMIP
LNs in each glomerulus? and, (3) at which synapses are vesicles associated with
neuropeptides (dense core vesicles, or DCVs) (Prokop and Meinertzhagen, 2006;
Merighi, 2018) enriched in the given putMIP LN’s axon terminal? To answer these
questions, we first used several criteria (see Methods) for identifying fully traced putMIP
LNs and identified 20 ideal candidates (~10% of all AL LNs) (Figure 2F).

After identifying several optimal candidates, we wondered whether any putMIP
LNs can be separated into axonic/dendritic compartments. If true, this would suggest
putMIP LNs make region-specific output/input not unlike what has been suggested for the
“‘heterogeneous LNs” in the honeybee AL (Flanagan and Mercer, 1989; Fonta et al., 1993;
Sachse and Galizia, 2002; Galizia and Kimmerle, 2004). Synaptic flow centrality
(Schneider-Mizell et al., 2016) and axonal-dendritic segregation indices reveal all putMIP
LNs lack clearly definable input and output compartments (Figure 2F). Moreover, the low
synaptic flow centrality suggests individual putMIP LN arbors act as intraglomerular local
processing units within the glomeruli they innervate. This structural feature is similar to
interneurons in the crustacean STG and vertebrate nervous system (Carnevale et al.,
1997; Chitwood et al., 1999; Otopalik et al., 2017b, 2017a, 2019), and may be a means
for MIPergic LNs to manipulate the activity in one glomerulus independent of their activity
in the other glomeruli they innervate. Consistent with this supposition, neurites from
individual putMIP LNs within a given glomerulus contain nearly identical amounts of
dendritic and axonic sites (Figure 2G). However, regardless of the balanced input:output
site ratios across all glomeruli innervated, putMIP LNs may receive unbalanced amounts
of excitatory drive, inhibitory suppression, and modulatory input across the AL. If
unbalanced concentrations of these various input types (albeit based on synapse
numbers) do exist, this could explain an individual putMIP LN’s variable activity in each
glomerulus. Moreover, synapse counts strongly predict functional output strength from
other systems, including other Drosophila AL neurons (Ding et al., 2016; Frechter et al.,
2019; Barnes et al., 2020; Lyu et al., 2020; Holler et al., 2021; Schlegel et al., 2021).
Therefore, we first assessed general input demographics for each putMIP LN (Figure 3A
and Figure S5), and the balance of excitatory, inhibitory, and modulatory input each

putMIP LN receives across all glomeruli (Figure 3B). Then, we assess each putMIP LN’s
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general output demographics, as well as which of these targets are postsynaptic to DCV
enriched putMIP LN presynaptic terminals (Figure 4B).

Most putMIP LNs receive more input from OSNs (45% of putMIP LNs; ~31%-54%
total input) than other principal neuron categories, while 30% of putMIP LNs receive the
most input from PNs (~25%-40% total input) and other LNs (~25% of putMIP LNs; ~26%-
41% total input) (Figure 3A). Interestingly, every putMIP LN forms strong connectivity
with every other putMIP LN (Figure 3A and Figure S5). This all-to-all circuit motif
suggests depolarizing one MIPergic LN likely drives inhibition across other members of
the MIPergic LN ensemble. This motif is reminiscent of the inhibitory connections
amongst starburst amacrine cells (SACs) in the vertebrate retina, which help define each
SAC'’s stimulus receptive field (Ding et al., 2016). Perhaps a similar operation is produced
by MIPergic LN-to-MIPergic LN inhibition, thus enabling individual MIPergic LNs to act as
intraglomerular local processing units within select glomeruli.

Across the entire AL, most putMIP LNs (putMIP LNs 4-6, 8, and 10-20) receive
more excitatory drive than inhibitory input (~75% - 100% glomeruli innervated) (Figure
3B). The amount of excitation a given putMIP LN receives within a glomerulus can be as
high as all of the input to the given putMIP LN (e.g., putMIP LN 2 input in DM4) or as low
as no excitatory input (e.g., putMIP LN 5 input in VL1) (Figure 3B). There are five putMIP
LNs (putMIP LNs 1-3, 7, and 9) that mostly (~84% - 98% glomeruli innervated) receive
more inhibitory input across the glomeruli they innervate (Figure 3B). Similar to the range
of excitatory input, the amount of inhibitory input a given putMIP LN receives can be as
high as all of the input a given putMIP LN receives in that glomerulus (e.g., putMIP LN 9
input in DA4l) or as low as no inhibitory input to the given putMIP LN (e.g., putMIP LN 3
input in VM1) (Figure 3B). In some instances, the ratio of excitatory vs. inhibitory inputs
were equal (10 glomeruli across 6 putMIP LNs), while in one case (putMIP LN 12 input in
VM2) the ratio of all three input types were balanced (Figure 3B). Moreover, putMIP LN
5 receives twice as much excitatory inputs as inhibitory inputs in VM2, but here the
amount of excitatory and modulatory inputs is balanced (Figure 3B). More broadly, the
ratio of excitatory-to-inhibitory inputs onto each given putMIP LN across glomeruli was
generally mixed (i.e., not as straightforward as all, equal, or none), but still excitatory

inputs dominate (~1.2-2.5x more) (Figure 3B). Altogether, these results show that
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MIPergic LNs receive broad excitatory input that generally outweighs inhibitory inputs,
thus suggesting activation of a broad-range of olfactory channels can recruit MIPergic LN
activity.

To test if these anatomical inputs correspond well with functional supposition, we
measured MIPergic LN odor-evoked responses to a panel of diverse odorants (Figure
3C). Most odors in our panel drove inhibitory responses in MIPergic LN neurites in several
glomeruli, regardless of behavioral valence (Figure 3C). For instance, geranyl acetate is
behaviorally attractive (Knaden et al., 2012) and evokes an inhibitory response in
MIPergic LN neurites in DM4 (mean max %AF/F = -37.72%, n = 3) and VM2 (mean max
%AF/F =-92.29%, n = 3) (Figure 3C). In contrast, the behaviorally aversive odor 1-oct-
3-ol (Knaden et al., 2012) inhibits MIPergic LN processes in DM1 (mean max %AF/F = -
55.56%, n = 2), DM2 (mean max %AF/F =-263.69%, n = 2), VA2 (mean max %AF/F = -
305.99%, n = 2), and VM2 (mean max %AF/F = -97.62%, n = 2) (Figure 3C). Strikingly,
we found that in some animals an odor would drive strong inhibitory responses in
MIPergic LN neurites, while in other animals the same odor would drive excitatory
responses in MIPergic LN neurites in the same glomerulus. For example, ammonium
hydroxide activated MIPergic LN neurites in DM1, DM4, DP1m, and VA2 in some animals,
but inhibited MIPergic LN neurites in another case (Figure 3D). This result may arise from
animal-to-animal differences in MIPergic LN connectivity within the AL, just as their
morphology varies from animal-to-animal. In contrast, ACV reliably and consistently
evoked robust activation of MIPergic LN neurites in nearly every glomerulus tested (mean
max %AF/F = ~34-148%, n = 4) (Figure 3C and 3D). This suggests that, despite variable
morphology and odor-evoked responses to certain odorants, consistent activation of
MIPergic LNs (and potentially MIP release) in response to ACV persists. However, we
acknowledge that these MIPergic LN responses cannot be directly linked to their release
of MIP; odor-evoked MIPergic LN activation might evoke the release of GABA or MIP
(Figure 1). We attempted to determine what olfactory stimuli drove MIPergic LN DCV-
release using two different peptide release sensors: preproANF-EMD (Rao et al., 2001)
and NPRR-ANP (Ding et al., 2019). However, we were unable to resolve DCV-trafficking
or peptide release (i.e., decrease in fluorophore puncta) with either sensor, most likely

due to weak expression levels of either sensor when used in combination with our driver.
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Regardless, multiple lines of evidence suggest MIP likely plays a role in ACV processing,
such as: (1) multiple ACV-responsive glomeruli are statistically likely to be co-innervated
by a single MIPergic LN (Figure 1F); (2) putMIP LN terminals presynaptic to ACV-
responsive OSNs house DCVs (Figure 4B); (3) while most odors drive inhibitory
responses in MIPergic LNs, ACV consistently drives strong activation in MIPergic LN

neurites across several glomeruli (Figure 3C and 3D).

MiIPergic LN Downstream Partners and Widespread Sex Peptide Receptor
Expression Within the AL

Most putMIP LNs generally target other non-putMIP LNs (45% of putMIP LNs;
~27%-40% of total output) and OSNs (35% of putMIP LNs; ~28%-44% of total output)
(Figure 4A). Notably, for some putMIP LNs a sizeable proportion of synaptic output
(putMIP LN 10, 13, 15, and 16; ~26%-35% of total output) targeted members of the
“‘Unknown” category, which includes unidentified neurons and/or fragments of neurons
that have yet to be annotated (Figure 4A). Together, these results suggest that,
generally, MIPergic LNs are likely to be involved in several fast-acting disinhibitory circuits
across the AL, as AL LNs express GABAa (Wilson and Laurent, 2005). To determine
which of these downstream partners were likely targets of MIPergic modulation, we
determined which postsynaptic partners were downstream of putMIP LN terminals where
dense core vesicles (DCVs) could be observed (Figure 4B). We observed several
instances where DCVs could be found in putMIP LN terminals presynaptic to OSNs, PNs,
and ventral LNs (Figure 4B). Based on these observations, OSNs, PNs, and ventral LNs
are likely targets for MIPergic modulation. However, the presence of DCVs in MIPergic
LN presynaptic terminal does not necessarily mean the downstream neuron is modulated
by MIP. To determine which downstream partners are subject to MIPergic modulation,
we must identify which AL neurons express MIP’s cognate receptor, the inhibitory sex
peptide receptor (SPR) (Yapici et al., 2008; Yang et al., 2009; Kim et al., 2010; Poels et
al., 2010).

To this point, we have demonstrated that MIP is released by an ensemble of

GABAergic patchy LNs, which target and receive input from across the entire AL. Electron
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microscopy evidence indicates that several AL principal neuron types are plausible
targets for MIPergic modulation (Figure 5A), but this can only be determined by
identifying the AL neurons that express SPR. To determine which AL neurons express
SPR, we took advantage of animals with a CRISPR/Cas9-mediated T2A-GAL4 insertion
within the endogenous SPR locus (Katow et al., 2019), thus enabling GAL4 expression
within SPR-expressing cells (Figure 5B). We first noted overlap between SPR-T2A-GAL4
derived GFP and staining for the classic glia marker reverse polarity (repo) (Figure 5C),
which MCFO experiments revealed correspond to: (1) cortical glia, (2) neuropil
ensheathing glia, and (3) tract ensheathing glia (Figure 5D). However, while these glial
subtypes are intimately associated with AL neurons (Hartenstein, 2011; Freeman, 2015;
Kremer et al.,, 2017), there is no evidence directly linking the actions of these glial
subtypes with AL processing. Therefore, we turned our attention to AL principal neuron
types: OSNSs, LNs, and PNs.

Olfactory sensory neuron somata are located within the third-antennal segment
and maxillary palp in Drosophila (Joseph and Carlson, 2015; Schmidt and Benton, 2020).
We find 208.9 = 11.89 (n = 17 animals, 30 antennae) and 63.42 £ 4.31 (n = 18 animals,
31 maxillary palps) SPR-T2A-GAL4 positive neurons in the third-antennal segment and
the maxillary palp, respectively (Figure 5E & 5F). Moreover, by performing MCFO
experiments where the antennal nerve is left attached to the brain, we find OSN fibers
that innervate: DM2, DM5, VA1d, VA1v, VA2, VA5, VA7l, VA7Tm, VM1, VM2, VM&d,
VMb5v, and VM6 (Figure 5G). Despite the stochastic nature of MCFO, we believe these
glomeruli likely capture the total number of SPR-expressing OSNs since there are ~187-
203.5 OSNs that innervate these glomeruli, excluding VA7m (Grabe et al., 2016).
Interestingly, MIPergic modulation of sensory afferents may be a fundamental feature in
Drosophila as we find SPR-T2A-GAL4 expression in afferents belonging to each sensory
modality (Figure S6).

In addition to OSNs, we noted several cells immunopositive for the proneural
transcription factor embryonic lethal abnormal vision (ELAV) next to the AL, which
suggested SPR-expression in either PNs and/or LNs (Figure 5H). By using intersectional
genetics and MCFO, we find that these neurons consist of: 4.89 + 0.21 (n = 23) SPR-

expressing glutamatergic interneurons (GIutLNs) (Figure 5H & 5l); several uniglomerular
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PNs, some of which could be identified as belonging to DA4, VA3, VA7m, VC1, and VC2
(Figure 5J); and, several lateral LNs (Figure 5K). Sex peptide receptor expression in
PNs is particularly interesting, especially in glomeruli such as VA7m where OSNs also
express SPR, because it suggests certain shared features between GABAergic and
MIPergic signaling in the AL. For instance, projection neurons express both GABAa and
GABAs receptors (Wilson and Laurent, 2005) and computational evidence suggests
postsynaptic inhibition can be used to reduce the gain of second-order neurons’
responses (Ayaz and Chance, 2009). Assuming broad SPR expression amongst PNs
(Figure 5J), then MIPergic modulation of PNs may serve as an additional (potentially
degenerate) locus for MIPergic modulation of olfactory gain.

In agreement with these results, we find similar neuron types - but not necessarily
numbers - using a SPR bacterial artificial chromosome GAL4 driver (SPR-GAL4::VP16)
(Ameku et al., 2018) (Figure S7), and publicly available scRNA-seq datasets (Li et al.,
2017; Croset et al., 2018; Davie et al., 2018) (Figure S8 and Figure S9). The discrepancy
in the number of neurons of a given type observed between the SPR-T2A-GAL4 versus
the SPR-GAL4::VP16 drivers is likely a result of the non-native chromosomal topology,
as well as potentially missing enhancer elements, of the SPR-GAL4::VP16 driver.
Additionally, we created a SPRMI135%3.T2A-L exA::QFAD driver strain whose expression in
the adult central brain was too weak to resolve neurites, but may still be of interest for
those interested in studying SPR in the larval CNS (Figure S10).

MiPergic Signaling Adjusts Afferent Gain in Food Odor-Associated Glomeruli

We have shown that: (1) MIPergic LNs significantly co-innervate several ACV-
responsive glomeruli; (2) putMIP LNs form many reciprocal connections and receive
significant excitation within ACV-responsive glomeruli; (3) MIPergic LNs are consistently
activated by ACV; and, (4) many ACV-responsive OSNs express the MIP receptor, SPR.
Altogether, these results indicate that ACV-responsive glomeruli are likely influenced by
MIPergic modulation. To test whether MIP can alter the odor-evoked responses in ACV-
responsive glomeruli, we first recorded from the OSNs in these glomeruli before, during,

and after applying synthetic MIP (synMIP) (see Methods) (Figure 6A). We chose to use
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this approach, as oppose to stimulating MIPergic LNs while recording from OSNSs,
because any changes observed in OSN responses after stimulating MIPergic LNs could
be due to GABA and/or MIP (Figure 1A). Moreover, as previously stated, we attempted
to determine the stimulation intensity necessary for MIP release from MIPergic LNs by
stimulating the LNs via P2X2 misexpression and ATP injection (Lima and Miesenbdck,
2005), while simultaneously measuring peptide release with a peptide release sensor.
However, because of the aforementioned reasons, these sensors could not be used for
this purpose.

Olfactory sensory neuron axons display robust responses to both test
concentrations of ACV before synMIP application (Figure 6B). However, after synMIP
was applied (the “during” test) the odor-evoked responses of several glomeruli were
altered in an odor-concentration independent manner (albeit, not statistically significantly)
(Figure 6B). After the washout period (the “after” test), DM1 OSN odor-evoked responses
to both odor concentrations are substantially diminished (10-2: p = 0.040, n = 8, before v.
after; 10%: p = 0.048, n = 6, before v. after; Bonferroni-corrected repeated-measures
pairwise t-tests). Although, we can’t rule out likely polysynaptic contributions to this effect,
this suggests MIP’s effects on OSN odor-evoked responses last for extended epochs.
Interestingly, though most OSNs tested showed varying concentration independent
decreases in their odor-evoked responses, DM2 OSNs showed a notable (albeit
nonsignificant) concentration independent increase in their responses (102 ~30%AF/F
increase in max response; 10%: ~200%AF/F increase in max response) (Figure 6B).
Much like the effect of MIP on DM1 OSN responses, the increase in DM2 OSN odor-
evoked responses persisted even after the ten-minute washout period (the “after” test)
(Figure 6B). Altogether, these results show that MIP modulates OSN odor-evoked
responses in a stimulus concentration independent manner, but these effects may be
(and are likely) polysynaptic in-nature. Therefore, we decreased SPR levels in these
OSNs s to test the necessity of direct MIP-SPR signaling on the observed changes in OSN
odor-evoked responses (Figure 7).

We find that DM1 OSN odor-evoked responses are no longer decreased by
synMIP application when SPR is knocked down (102 p =0.11,n=7; 10%: p = 0.156, n

= 8; repeated-measures one-way ANOVA). These findings are consistent with the idea
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that direct MIP-SPR signaling is, at least in part, responsible for the changes in OSN odor-
evoked responses after synMIP application. Additionally, we no longer observe any
significant change in DM2 OSN odor-evoked responses after synMIP application (102 p
= 0.678, n = 7, before v. during; p = 0.102, n = 7, before v. after; 10%: p = 0.56, n = 7,
before v. during; p = 1.00, n = 7; Bonferroni-corrected repeated-measures pairwise t-
tests) (Figure 7A).

DISCUSSION

Altogether, our data reveal a novel neuropeptide signaling pathway that mediates
olfactory gain control. We have shown that MIP is released by patchy GABAergic LNs
that — as individuals — innervate a different compliment of olfactory channels from animal-
to-animal. However, these MIPergic LNs reliably innervate all glomeruli across all
animals, where they receive and target many principal neuron types. We have revealed
which downstream partners express the MIP receptor (SPR) and are therefore subject to
MIPergic modulation. Then, we use a “simple case study” for the consequences of
MIPergic modulation by testing MIP’s effect on the odor-evoked responses of OSNs in
several food-odor associated glomeruli. This “simple case study” reveals that MIP has
concentration independent effects on OSN input, wherein most glomeruli tested OSN
input is decreased while in one glomerulus OSN input is boosted. As the activity of these
OSNs - and MIP itself - has been shown to play a key role in the animal’s odor-evoked
behavioral responses (see below), the neural substrates and signaling pathway detailed
here likely contribute to a key circuit switch for behavioral attraction vs. aversion. Below,
we expand upon several of the important circuit features and MIP-SPR signaling

properties discovered in this work.

Non-Stereotypical Morphology of Neurons in a Stereotyped Circuit

We found that MIPergic LNs are patchy GABAergic LNs that — as individuals —
innervate a different repertoire of glomeruli across animals (Figure 1). This data is
consistent with that of a seminal tour de force report characterizing all AL LNs wherein

patchy LNs were generally described (Chou et al., 2010). We also show that individual



104

MIPergic LNs do not preferentially innervate any one glomerulus over others, or
preferentially innervate individual glomeruli associated with a particular odor-evoked
behavioral response or odor-tuning properties (Figure S1). These observations beg the
question: why is the morphology of neurons that release a specialized modulator (a
neuropeptide), which is relatively more energetically demanding to make and use, to
innervate different glomeruli from animal-to-animal? One explanation might be that
MIPergic LN morphological idiosyncrasy is a byproduct of experience during
development. Consistent with this, the initial LN glomerular innervation and dendritic
elaboration require during development requires OSN axons and cell-to-cell interactions
(Zhu et al., 2006; Chou et al., 2010). However, OSN removal in the adult does not disrupt
the animal-to-animal variability of patchy LNs (Chou et al., 2010). To the best of our
knowledge, a single locus (albeit environmental experience or heritable trait) that would
support animal-to-animal variation in patchy LNs has not been identified, but this line of
research remains of large interest (Yang et al., 2019).

Another explanation for animal-to-animal differences in MIPergic LN morphology
is that it may not matter which individual MIPergic LN form synapses with which
downstream target, as long as all of the MIPergic LN downstream targets are met. Every
nervous system is the byproduct of the adaptive pressures demanded by the animal’'s
niche; a place that can be volatile, continually changing in unpredictable ways. Therefore,
it's likely a developmental “parameter space” exists, wherein just enough genetic
idiosyncrasy is allowed for in a population to help prevent extinction in the face of
environmental perturbations. The breadth of this developmental parameter space (or the
degree of variability from the “median”) would be defined by many generations of selective
pressures, wherein subtle changes in genetic idiosyncrasies might equally result in
winners and losers. As a consequence of these genetic idiosyncrasies, phenotypic
variability in a given developmental program would inevitably accumulate, resulting in the
observed animal-to-animal variability in neuronal features (e.g., morphology, ion channel
distribution, etc.). Consistent with this idea, animal-to-animal variations in the neural
architecture have been noted in grasshoppers (Goodman, 1978), crabs (Goeritz et al.,
2013; Otopalik et al., 2017b, 2017a, 2019), lobsters (Thuma et al., 2009; Daur et al.,
2012), flies (Chou et al., 2010; Caron et al., 2013; Linneweber et al., 2020), and
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vertebrates (Ambros-Ingerson and Holmes, 2005). However, in each case, nervous
system functions persist, not unlike MIP’s consistent decrease in select OSN responses
(Figure 6). Moreover, several significant correlations exist between pairs of glomeruli for
and against MIPergic LN innervation, such as the significant probability for MIPergic LN
co-innervation in ACV-responsive glomeruli (Figure 1). This suggests that - to go back to
our developmental parameter space supposition — individual MIPergic LNs can innervate
different sets of glomeruli from animal-to-animal, as long as the right combinations of

downstream targets (e.g., food-odor responsive glomeruli) are met by the ensemble.

Considering Copulatory Changes in MIP-SPR Signaling in the AL

MIP-SPR signaling was previously implicated in a post-mating switch in polyamine
olfactory sensitivity, wherein both MIP and SPR expression increases in IR41a-
expressing OSNs after females copulate resulting in increased sensitivity to polyamines
(Hussain et al., 2016). These investigators found that MIP is expressed by OSNs and is
upregulated after post-copulation (Hussain et al., 2016), however in accordance with
previous results from RNA-sequencing (Menuz et al., 2014; Mohapatra and Menuz, 2019;
McLaughlin et al., 2021) and immunocytochemistry experiments (Carlsson et al., 2010)
we did not find evidence for MIP-expression in OSNs. Moreover, we could not find
qualitative differences in the number of MIPergic LNs between males, mated females, or
virgin females. The MIP-SPR post-mating behavior switch model also supposes
copulation induces changes in SPR-expression in OSNs, while other groups have shown
that post-mating sensory changes arise from a sex peptide (SP) signaling pathway that’s
initiated when SP from the male’s seminal fluid acts on neurons in the reproductive tract
(Chapman et al., 2003; Liu and Kubli, 2003; Yapici et al., 2008; Hasemeyer et al., 2009;
Yang et al., 2009; Rezaval et al., 2012; Walker et al., 2015). In the latter model, SPR-
expression is not altered, but instead SP-SPR signaling eventually inactivates ascending
neurons (SP abdominal ganglion, or SAG neurons) which then activates/inactivates
central brain circuitry to produce post-mating sensory changes (Walker et al., 2015).
Consistent with this, we find no significant difference in the number of SPR-positive

neurons in the AL between mated vs. virgin females (Figure S6 and Figure S7).
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Moreover, our data are consistent with recent experimental evidence using a SPR Tango
activity sensor, which also showed that SPR-expression in the brain is not different
between mated vs. virgin females (Katow et al., 2019). Altogether, our evidence does not
support post-mating changes in MIP-SPR signaling circuitry, but our evidence does
support MIP-SPR signaling modulates the gain of OSN input (Figure 6). Although we did
not test IR41a-expressing OSNs, perhaps MIP from MIPergic LNs also modulates the
gain of these OSNs.

Linking MIP-SPR Signaling to Behavioral Outcomes

Each AL glomerulus can be characterized by the particular chemosensory receptor
compliment of their cognate OSN(s). This, in part, gave rise to a long-held belief that each
olfactory glomerulus represented a “labeled line”, where each glomerulus represented a
distinct channel for detecting and processing a particular odor. Decades of evidence has
since revealed that there are few labeled lines (e.g., glomeruli V and DA2), and - as was
stated above - most odorants elicit a response from several olfactory channels (Hallem
and Carlson, 2006; Silbering et al., 2008; Semmelhack and Wang, 2009; Su et al., 2009;
Haddad et al., 2010). Previous behavioral experiments have circumvented this limitation
by using “optogenetic odors” to selectively activate different OSNs (Bell and Wilson,
2016). These experiments found that DM1 and DM2 coactivation do not summate and
co-stimulation of both glomeruli produces a behavioral response that resembles DM1-
only activation (Bell and Wilson, 2016). Based on this, the investigators proposed that an
antagonistic relationship exists between DM1 and DMZ2, such that co-stimulation reduces
the efficacy of either or both glomeruli (Bell and Wilson, 2016). We find MIP decreases
and increases DM1 OSN and DM2 OSN odor-evoked responses in a concentration
independent manner (Figure 6). Therefore, MIP-SPR signaling in DM1 and DM2 may act
as a homeostat such that coactivation of each glomerulus never produces a behavioral
response greater than the DM1-only activation response. In doing so, this “buffer” would
prevent saturation at the downstream LHN subtype that receives convergent excitatory
inputs from each glomerulus (Fisek and Wilson, 2014; Jeanne et al., 2018; Schlegel et
al., 2021).
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MIP-SPR signaling was previously implicated in the balance of olfactory drive for
food-derived odors (Min et al., 2016). These investigators found that inactivating all
MIPergic neurons increases the animal’s drive for food-derived odors in a two-choice
assay (a T-maze assay) (Min et al., 2016). This effect was replicated in similar
experiments performed with MIP-genetic null mutants and could be reversed by MIP
overexpression in all MIP neurons in this mutant background (Min et al., 2016). Moreover,
single sensillum recordings from OSNs associated with food-odor olfactory sensation
were found to spike more frequently when all MIPergic neurons are inactivated (Min et
al., 2016). In contrast, if all MIPergic neurons were made overly active the animal’s drive
for food-odors was significantly diminished, so much so that they display odor-induced
aversion (attraction index of -5% to -30%) (Min et al., 2016). Together, these behavioral
results suggest MIP-SPR signaling controls the animal’s sensitivity to food-associated
odors and drive to search for food. In accordance with these observations, we found that
individual MIPergic LNs significantly co-innervate several food-odor associated glomeruli
(Figure 1) and neurons from several of these glomeruli express the MIP receptor, SPR
(Figure 5). Moreover, we found that MIP application significantly diminishes odor-evoked
responses from food-odor associated glomeruli in a concentration independent manner
(Figure 6). Altogether, these results point to a probable role for MIPergic LN-derived MIP
signaling to adjust olfactory processing, likely while other MIPergic neurons adjust other
sensory/motor elements, in accordance with satiety homeostasis drives. However, this
role is likely one of several that the MIPergic LNs play in AL processing as they also
release GABA, and form connections with neurons outside of the SPR-expressing
neurons identified here. More broadly, these MIPergic LNs may be a critical feature of
insect AL processing as MIPergic LNs are found across Arthropoda (Utz et al., 2007;
Neupert et al., 2012; Siju et al., 2014; Lizbinski et al., 2018; Habenstein et al., 2021).



METHODS

Key Resources Table

108

REAGENT or RESOURCE \ SOURCE \ IDENTIFIER
Antibodies
Rabbit anti-RFP Rockland Catalog #: 600-401-
379; RRID:
AB 2209751
Rabbit anti-DsRed Clontech Catalog #: 632496;

RRID: AB_10013483

Rat anti-DN-Cadherin

DSHB, University of lowa

Catalog #: DN-Ex #8;
RRID: AB 528121

Rabbit anti-GFP

Thermo Fisher Scientific,
CA

Catalog #: A-11122;
RRID: AB_ 221569

Chicken anti-GFP

Abcam

Catalog #: ab13970;
RRID: AB 300798

Rabbit anti-Hemagglutinin

Cell Signaling Technology

Catalog #: 3724;
RRID: AB_ 1549585

Mouse anti-V5-Tag::DyLight550

BioRad (formerly AbD
Serotec)

Catalog #:
MCA1360D550GA,;
RRID: AB_2687576

Rat anti-FLAG

Novus Bio

Catalog #: NBP1-
06712SS; RRID:
AB_ 1625982

Mouse anti-Bruchpilot

DSHB, University of lowa

Catalog #: nc82;
RRID: AB 2314866

Rabbit anti-Myoinhibitory Peptide
(MIP)

Dr. Manfred Eckert (gift
from Dr. Christian
Wegener)

RRID: AB_2314803

Rat anti-Embryonic lethal
abnormal vision (Elav)

DSHB, University of lowa

RRID: AB_528218

Mouse anti-Reversed polarity
(Repo)

DSHB, University of lowa

RRID: AB_528448

Goat anti-Rabbit AlexaFluor 488

Thermo Fisher Scientific,
CA

Catalog #: A-11008;
RRID: AB 143165

Donkey anti-Chicken AlexaFluor
488

Jackson ImmunoResearch
Laboratories, Inc.

Catalog #: 703-545-
155; RRID:
AB 2340375

Donkey anti-Rabbit AlexaFluor
546

Thermo Fisher Scientific,
CA

Catalog #: A-10040;
RRID: AB 2534016

Goat anti-Mouse AlexaFluor 546

Thermo Fisher Scientific,
CA

Catalog #: A-11030;
RRID: AB_2534089

Donkey anti-Rat AlexaFluor 647

Abcam

Catalog #: ab150155
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Experimental Models: Organisms/Strains

w’';; GADMI09277 Trojan Bloomington Stock Center | RRID: BDSC_60324
LexA::QFAD/TM6B, Tb'
W';; ChAT Mi04508 Trojan Bloomington Stock Center | RRID: BDSC 60319
LexA::QFAD/TM6B, Tb'
w'; VGIlut MI04979 Trojan Bloomington Stock Center | RRID: BDSC_ 60314
LexA::QFAD/CyO, P{Dfd-GMR-
nvYFP}
y',w’, 10xUAS-IVS-mCD8::RFP, | Bloomington Stock Center | RRID: BDSC_32229
13xLexAop-mCD8::GFP
w;; GMR32F10-GAL4 Bloomington Stock Center | RRID: BDSC 49725
hs-FIpG5.PEST;; UAS-MCFO-1 Bloomington Stock Center | RRID: BDSC 64085
w’; 10xUAS-IVS-myr::tdTomato Bloomington Stock Center | RRID: BDSC 32222
w’; 26xLexAop-mCD8::GFP Bloomington Stock Center | RRID: BDSC 32207
w’; 10xUAS-IVS-mCDS8::GFP Bloomington Stock Center | RRID: BDSC 32185
w; 20xUAS-IVS-GCaMP6f Bloomington Stock Center | RRID: BDSC_42747
w’; UAS-SPR-RNAI Bloomington Stock Center | RRID: BDSC 66888
w~; UAS-DenMark, UAS- Bloomington Stock Center | RRID: BDSC_33064
syt.eGFP; In(3L)D,
mirrSaib1 D1/TM6C, Sb’
y' w’, SPRMI13553 Bloomington Stock Center | RRID: BDSC 60934
y',w’; wgSP1/CyO; 13xLexAop2- | Bloomington Stock Center | RRID: BDSC 52271
6xmCherryHA
w*,dig' frt101/FM7a;;CG11583% | Bloomington Stock Center | RRID: BDSC_36283
1124 frt80B/TM3, Sb’
SPRMI3885.T2A-| exA::QFAD This study. N/A
y', w, SPR-T2A-GAL4 Shu Kondo, Tohoku Katow et al., 2019
University Flybase ID:
FBti0209968
Pebbled-GAL4 (Peb-GAL4) R. Wilson, Harvard N/A
University
SPR-GAL4::VP16 J. Truman, University of Ameku et al., 2018
Washington (by way of M. | Flybase ID:
Texada, University of FBti0201391
Copenhagen)
Odors
Paraffin oil J.T. Baker, VWR CAS #: 8012-95-1
Apple Cider Vinegar (ACV) Heinz N/A
2-heptanone Millipore Sigma Catalog #: 537683;
CAS #: 110-43-0
1-hexanol Millipore Sigma Catalog #: H13303;

CAS #: 111-27-3
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1-oct-3-ol Millipore Sigma Catalog # 68225; CAS
#: 3391-86-4
Ammonium hydroxide Millipore Sigma Catalog #: 221228;
CAS #: 1336-21-6
Benzaldehyde Millipore Sigma Catalog #: 8.01756;
CAS #: 100-52-7
Geranyl acetate Millipore Sigma Catalog #: 173495;

CAS #: 105-87-3

Recombinant DNA

pBS-KS-attB2-SA(2)-T2A- Daio et al., 2015 Addgene: #62949

LexA::QFAD-Hsp70

Software and Algorithms

VAA3D (v.3.20) Peng et al., 2010 RRID: SCR 002609

FluoRender (v.2.22.3) Wan et al., 2017 RRID: SCR_014303

FIJI (v.2.0.0) Open-Source RRID:SCR 002285

R Studio (v.1.4.1103) Open-Source www.rstudio.com

MATLAB 2016b MathWorks www.mathworks.com

Python 3 Open-Source RRID: SCR 008394

CorelDRAW 2021 Corel Corp. www.corel.com

Adobe lllustrator 2020 Adobe Inc. www.adobe.com

SCope Davie et al., 2018 http://scope.aertslab.o

rg

natverse Bates et al., 2020; https://natverse.org/
Schlegel et al., 2021

Connectome-neuprint/neuprint- Stuart Berg (JRC) N/A

python

CloudVolume William Silversmith https://github.com/seu
(Princeton) ng-lab/cloud-volume

Contact for Reagent and Resource Sharing. Further information and reasonable
requests for reagents and resources should be directed to - and will be fulfilled by - the

Lead Contact, Tyler R. Sizemore (sizemoretyler92@gmail.com).

Experimental Model and Subject Details. Flies were reared on standard cornmeal and
molasses media at 24°C and under a 12:12 light:dark cycle. Equal numbers of male and
female animals were used when possible, excluding live-imaging experiments. For mating
status comparisons: 1) “virgin females” denotes meconium-positive females, 2) non-virgin
females were housed with males until processing for immunocytochemistry, and 3) flies

were age-matched and kept on the similar media until processed for
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immunocytochemistry.

Immunocytochemistry and Imaging. All immunocytochemistry was performed
generally as previously described (Sizemore and Dacks, 2016). Briefly, samples were
dissected, fixed in 4% paraformaldehyde, then washed with phosphate buffered saline
with 0.5% Triton-X 100 (PBST) several times before taking samples through an
ascending-descending ethanol was series, then blocking in 4% IgG-free BSA (Jackson
Immunoresearch; Cat#001-000-162). Samples were then incubated in primary antibody
(see Key Resources Table) diluted in blocking solution and 5mM sodium azide.
Following primary antibody incubation samples were washed with PBST, blocked, and
incubated in secondary antibody diluted in blocking solution and 5mM sodium azide.
Finally, samples were washed, cleared using an ascending glycerol series (40%, 60%,
80%), and mounted on well slides in Vectashield® (Vector Laboratories, Burlingame, CA;
Cat#H-1200). Images were collected and analyzed as previously described (Sizemore
and Dacks, 2016), with the exception of images captured with a 40x/1.25 Silicone

UPlanSApo Olympus obijective.

Single LN Clone Induction and Glomerular Innervation Analysis. Single LN clones
were induced using the MCFO method (Nern et al., 2015). Flies carrying the MCFO
cassettes, Flp-recombinase, and GAL4 driver were raised under normal conditions (see
above) until heat shock. Adult flies were heat-shocked in a 37°C water bath for 12-25
minutes and returned to normal conditions for ~2-3 days before processing for
immunocytochemistry. With the exception of VA1v, glomeruli were defined according to
previously published AL maps (Laissue et al., 1999; Couto et al., 2005). Neuropil was
stained using anti-DN-cadherin or anti-Bruchpilot (see Key Resources Table).
Hierarchical clustering and principal components analysis (PCA) of glomerular
innervation data were performed as previously described (Chou et al., 2010). PCA was
performed without any arbitrary threshold of significance. Data were clustered using
Ward’s method (‘ward.D2”) and Euclidian distance using the ClustVis package
(https://github.com/taunometsalu/ClustVis) (Metsalu and Vilo, 2015). Pairwise Pearson’s

correlation coefficient of MIPergic LN glomerular innervation were determined using the
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“cor” function in the base R stats package, and significant correlations were subsequently
assessed using the “rcorr” function in the Hmisc package. The corrplot package was used
to create the hierarchically clustered (using Ward’s method) representation of these
pairwise correlation coefficients depicted in Figure 1. In every case used, glomerular
“odor scene” information is derived from previous assignments (Bates et al., 2020b).

To determine if MIPergic LNs preferentially innervate glomeruli based on valence,
glomeruli were assigned “attractive” or “aversive” based on either: (1) previous reports
(Semmelhack and Wang, 2009; Stensmyr et al., 2012; Min et al., 2013; Ebrahim et al.,
2015; Mansourian et al., 2016); or, (2) derived from the behavioral valence of the odors
(Knaden et al., 2012) that glomerulus’ OSNs respond to according to DoOR 2.0 (Munch
and Galizia, 2016). Glomeruli whose OSNs respond to neutral (e.g., DL5), or whose
valence is state-dependent (i.e., the V glomerulus) (van Breugel et al., 2018), were
excluded from this analysis. These methods were also used to determine if MIPergic LNs
preferentially innervate glomeruli based on the functional group of a given OR’s cognate

odorant, with the exception of the V, VA7m, and VM6 glomeruli.

MiIPergic LN Anatomical Marker Density Analyses. Analysis of syt.eGFP, DenMark,
anti-MIP immunoreactive puncta signal, and LN innervation (via mCD8::GFP signal)
density in antennal lobe glomeruli was performed as previously described (Hong and
Wilson, 2015). Images of all antennal lobes within a given brain were collected with similar
confocal scan settings (laser power, detector offset, etc.) and later imported into FIJI for
quantification. Using the Segmentation Editor plugin and a previously described script
(graciously provided by Rachel Wilson, Harvard) (Hong and Wilson, 2015), ROIls were
manually traced every 2-3 slices around the neuropil boundaries of each glomerulus using
the anti-DN-Cadherin or anti-Bruchpilot channel, and then interpolated through the stack
to obtain boundaries in adjacent slices. To ensure each brain contributed equally when
pooling data across brains, signal density values for all glomeruli were normalized to the
maximum density value within the given indicator being analyzed (e.g., all density values
for syt.eGFP were normalized to the maximum syt.eGFP value). The “ggscatter” function
in the ggpubr package was used to determine Pearson’s correlation coefficients and p-

values when assessing correlations between effector/anti-MIP and MIPergic LN
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mCD8::GFP voxel density across all glomeruli. Adjusted R-squared values were
calculated using the base-R stats package and correspond to how well each data being

assessed for the given correlation analysis fit a linear model.

Putative MIPergic LN Connectome Analyses. All connectome analyses leveraged the
publicly available Janelia FIyfEM Drosophila hemibrain electron microscopy volume
(version 1.2; https://neuprint.janelia.org/) (Clements et al., 2020; Scheffer et al., 2020),
and recently described analysis suites (Bates et al., 2020a; Schlegel et al., 2021). We
used several criteria for determining which neurons are most likely MIPergic LNs, the first
of which was the candidate neurons must be antennal lobe LNs. Next, we selected those
candidate LNs that receive input from the serotonergic CSD neurons as all MIPergic LNs
express the 5-HT1A serotonin receptor (Sizemore and Dacks, 2016), and form
connections with the serotonergic CSD neurons (Coates et al., 2017). We then used
natverse (Bates et al., 2020a) to transform the interconnectivity of each candidate neuron
into the FCWB template brain three-dimensional space (Chiang et al., 2011; Costa et al.,
2016), so we could generate a morphological similarity score between our query neuron
and neurons FlyLight project's GMR-GAL4 repository (Jenett et al., 2012) by using the
built-in NBLAST package (nat.nblast) (Costa et al., 2016). We selected for only those
candidates that achieved a GMR32F10-GAL4 NBLAST score of >0.60 [“identical twins”;
(Costa et al., 2016)]. Lastly, any remaining candidate MIPergic LNs were filtered for those
neurons that are considered “Traced”, the hemibrain’s highest level of tracing
completeness and confidence. Only neurons that met all of these criteria were considered
for further analysis.

Most methods for analyzing putMIP LN morphology and connectivity have been
described recently (Schlegel et al., 2021). Putative MIPergic LN skeleton meshes (Figure
2F) were fetched from the hemibrain data repository by accessing the neuPrint Python
API using the neuprint-python (https://github.com/connectome-neuprint/neuprint-python)
and Cloud-Volume (https://github.com/seung-lab/cloud-volume) packages. The
hemibrainr package (https://github.com/flyconnectome/hemibrainr) was used to fetch
each putMIP LN’s metadata and calculate each neuron’s dendrite-axon segregation index

and flow centrality (Schneider-Mizell et al., 2016) using the recommended arguments.
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To determine the fraction of a given putMIP LN’s total input or output reside within
each glomerulus the total number of pre- and postsynaptic sites, and downstream
partners, were first extracted from the hemibrain repository using the neuprintr
“get_roilnfo” function. To represent this data as percentages the given putMIP LN'’s
number of pre-/postsynaptic sites/or downstream partners present within a given
glomerulus were then divided by the total number of pre-/postsynaptic sites/or
downstream partners across all AL glomeruli, then multiplied by 100%.

To identify and compare the demographics of each putMIP LN’s upstream and
downstream partners, putMIP LN connectivity data were first extracted using the
hemibrainr “simple connectivity” function. The demographic of each presynaptic and
postsynaptic partner was generally assigned according to the neuron’s accompanying
‘name” or “type” as listed on neuPrint. In cases where a neuron’s “name” or “type” was
unannotated (“NA”), the neuron would be categorized as “Unknown”. We used the
following formula to determine the percentage of overall input a given putMIP LN receives
from a given neuron category: [(sum of connections from a given neuron category to the
given putMIP LN)/(summed amount of input that given putMIP LN receives from all
categories)] x 100%. Similar methods were applied for determining the percentage of
overall output a given neuron category receives from a given putMIP LN.

To determine the amount of excitatory, inhibitory, and modulatory input a given
putMIP LN receives within each glomerulus, we first categorized each presynaptic neuron
as either excitatory, inhibitory, or modulatory based on the presynaptic neuron’s neuPrint
“‘name”/"type”, previous immunocytochemistry results (Stocker et al., 1997; Dacks et al.,
2006; Okada et al., 2009; Tanaka et al., 2009; Chou et al., 2010; Das et al., 2011; Sen et
al., 2014), and/or the category assigned in previous reports (Schlegel et al., 2021).
However, we acknowledge several caveats to this analysis, such as: (1) this analysis
does not account for co-transmission; (2) several glomeruli are truncated within the
hemibrain AL (Schlegel et al., 2021); (3) we consider all LNs as inhibitory as most are
either GABAergic or glutamatergic (combined, these represent ~170/200 AL LNSs)
(Stocker et al., 1997; Okada et al., 2009; Tanaka et al., 2009; Chou et al., 2010; Das et
al., 2011; Liu and Wilson, 2013), but there are ~4 tyrosine hydroxylase-immunoreactive

(dopaminergic) and ~8-15 cholinergic and/or electrically coupled LNs in the AL (Shang et
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al., 2007; Chou et al., 2010; Huang et al., 2010; Yaksi and Wilson, 2010); (4) although
GABA can also act as an intrinsic modulator in the AL [reviewed in (Lizbinski and Dacks,
2018)], we only count GABAergic LNs as part of the “inhibitory input” category here; and,
(5) we consider all ventral LNs analyzed here as being glutamatergic, but there are ~1-2
dopaminergic (tyrosine hydroxylase-immunoreactive) ventral LNs (Chou et al., 2010).
Once each presynaptic neuron’s chemical identity (excitatory, inhibitory, or modulatory)
was determined, we used several approaches to assign these synapses to particular
glomeruli. In the case of uniglomerular PNs (uPNs) and OSNs, we leveraged the single
glomerulus innervation of these presynaptic neuron types to assign their synapse onto a
given putMIP LN synapse to the presynaptic neuron’s home glomerulus. That is to say,
OSN-to-putMIP LN and uPN-to-putMIP LN synapses were assigned to a glomerulus by:
(1) using the home glomerulus assigned to a given presynaptic in the neuron’s neuPrint
“‘name”/"type”, or (2) by the home glomerulus assigned to the neuron in previous reports
(Schlegel et al., 2021). For instance, if the presynaptic neuron was a cholinergic PN
whose home glomerulus is DA2, and this DA2 PN synapses on a given putMIP LN five
times, then those five synapses went to the overall excitatory input the given putMIP LN
receives within DA2. Neurons were only excluded from this analysis if the presynaptic
neuron’s home glomerulus was not previously identified (Schlegel et al., 2021). Once the
polarity of the input type was established, we used previously established 3D meshes for
each glomerulus (Schlegel et al., 2021) to determine if the XYZ coordinates of each
putMIP LN’s synapse(s) with a given presynaptic partner were located in a given
glomerulus. Synapse counts for each putMIP LN partner within the given glomerulus were
then summed by type (excitatory, inhibitory, or modulatory), and the resulting total was
divided by the total number of synapses the given putMIP LN makes within that

glomerulus to establish percent excitatory, inhibitory input, or modulatory input.

SPRM13885.T2A-LexA::QFAD Generation. The SPRM1385_T2A- exA::QFAD fly line was
established using previously described injections methods (Diao et al., 2015). We also
note that we also attempted to create an SPR-T2A-GAL4 using the pC-(lox2-attB2-SA-
T2A-Gal4-Hsp70)3 construct (Addgene #62957), but no founders emerged (potentially

owing to lethality when these construct elements are inserted in the SPR locus). Briefly,
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pBS-KS-attB2-SA(2)-T2A-LexA::QFAD-Hsp70 and ®C31 helper plasmid DNA were co-
injected into y', w, Mi{MIC}SPRM!I13885 ©hBS-KS-attB2-SA(2)-T2A-LexA::QFAD-Hsp70
(Addgene plasmid #62949) and pC-(lox2-attB2-SA-T2A-Gal4-Hsp70)3 (Addgene
#62957) were gifts from Benjamin H. White (NIH). SPRM1385.T2A | exA::QFAD

transformants were isolated as depicted in Figure S10.

Single Cell RNA-Sequencing Analysis of SPR expression. Single-cell transcriptomic
data were accessed and downloaded from the SCope web interface on 8/14/2018 and
4/7/2021. Projection neuron cluster boundaries were manually redrawn as depicted in
each dataset’s original report (Li et al., 2017; Croset et al., 2018; Davie et al., 2018).
Projection neuron subpopulations were then identified within each scRNA-seq dataset
using previously established marker genes (Komiyama et al., 2003; Komiyama and Luo,
2007; Li et al., 2017).

in vivo Calcium Imaging — animal preparation. All calcium imaging experiments were
performed on female flies ~1-5 days post-eclosion, and at room temperature. Animals of
the proper genotype were collected and briefly anesthetized on ice. Once anesthetized,
an animal was affixed to a custom-built holder with UV curable glue (BONDIC, M/N:
SK8024). Our custom-built holder consists of a sheet of aluminum foil with a small hole
(the imaging window) affixed to a 3D-printed design derived from similar designs
described previously (Weir et al., 2016). Once mounted, a small window exposing the
dorsal side of the brain was created, and covered with filtered recording saline (in mM: 2
CaClz, 5 KCI, 5 HEPES, 8.2 MgClz, 108 NaCl, 4 NaHCOs, 1 NaH2PO4, 10 sucrose, and 5
trehalose; adjusted pH: ~7.4) (Root et al., 2008). Following this, the air sacs, fat bodies,
and trachea covering the dorsal side of the brain were removed with fine forceps. With
the exception of minimal epochs during the synthetic MIP bath application experiments
(see below), the brain was continuously perfused with oxygenated (95%02/5%CO2)
recording saline using a Cole-Parmer Masterflex C/L (M/N: 77120-62) at a rate of

~2mL/min.

in vivo Calcium Imaging — Image Acquisition. Functional imaging data were acquired
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using a Prior Scientific Open Stand (M/N: H175) microscope mounted on Prior Scientific
motorized translational stage (M/N: HZPKT1), and equipped with an Olympus 10x/0.30
UPlanFL N objective and an Olympus 60x/1.00 LUMPlanFL N water-immersion objective.
A 470nm CoolLED pE-100 (CoolLED Ltd., Hampshire, UK) was used as the light source.
Each trial was captured with a Hamamatsu ORCA-4.0LT camera (Hamamatsu
Phototonics, Hamamatsu, Japan), and consists of 40 1,024x1,024 frames acquired at a

frame rate of ~9 Hz.

in vivo Calcium Imaging - Odor Preparation and Delivery. All odor concentrations are
reported as v/v dilutions in paraffin oil (J.T. Baker, VWR #JTS894), or autoclaved and
twice-filtered distilled water (for diluting acids). For example, 102 dilution indicates that
one volume of an odor is diluted with 100 volumes of paraffin oil. Dilutions were prepared
in 2mL odor vials (SUPELCO; P/N: 6020) that contained a final volume of 1mL of diluted
odor in paraffin oil every other day, or after two experiments (whichever came first). Odors
were presented as previously described (Bhandawat et al., 2007; Hong and Wilson, 2015;
Jeanne et al., 2018). Briefly, a carrier stream of carbon-filtered, dehumidified, air was
presented at 2.2 L/min to the fly continuously through an 8mm Teflon tube placed ~1cm
away from the fly. A three-way solenoid (The Lee Company, P/N: LHDA1231315H)
diverted a small portion of the airstream (0.2 L/min) through the headspace of an odor
vial for 200ms after triggering an external voltage command (TTL pulse) at frame 20 of
the trial. Considering the above, the odor is diluted further (by 10-fold) prior to delivery to
the animal. The odor stream joined the carrier stream 11cm from the end of the tube, and
the tube opening measured ~4mm.

Methods for assessing preparation health and performing multiple odor trials
generally conform to previous work (Hong and Wilson, 2015; Jeanne et al., 2018). At the
start of each experiment, the animal was presented a test odor (10-3 2-heptanone) to
assess the preparation’s health. Only the data collected from animals whose responses
to this test odor were robust and did not dramatically change from baseline over the
course of the experiment were used for further analysis. The only exceptions to this were
those data collected in synthetic MIP bath application experiments (see below), since

bath application of any modulator would likely result in network property changes that



118

would consequently change olfactory responses. Therefore, the test odor was only initially
presented to those animals used for synthetic peptide application experiments, so their
initial olfactory response health could be assessed. Each experiment consisted of multiple
odor trials (3 for OSNs; 4 for LNs) within a preparation which were then averaged to attain
a within-animal response. These within-animal averages were subsequently averaged

across many animals for subsequent statistical analysis, and “n” is reported as the
number of animals. Each odor trial consisted of five 200ms pulses of odor with a 1ms
interpulse interval. The same odor was never presented twice within 2min to prevent
depletion of the odor vial's headspace. If multiple odors were to be tested, then they were
presented randomly. If multiple concentrations of a given odor were to be tested, then the
lower concentration was presented before the higher concentration. Air entered and
exited each odor vial through a PEEK one-way check valve (The Lee Company, P/N:
TKLA3201112H) connected to the vial by Teflon tubing. The odor delivery tube was
flushed with clean air for 2min when changing between odors/concentrations. As an
additional preemptive measure, all odor delivery system components were hooked up to

the house vacuum line overnight.

in vivo Calcium Imaging — Data Analysis. All calcium imaging data were analyzed using
a custom-made script graciously provided by Marco Gallio (Northwestern University) and
has been described previously (Frank et al., 2015, 2017). With the exception of any
preparations that violated the aforementioned criteria (e.g., movement, diminishing prep
health, etc.), no data points or outliers were excluded from our analyses. Generally, the
number of flies to be used for experiments are not a limiting factor, therefore no statistical
power analyses were used to pre-determine sample sizes. Regardless, with the exception
of MIPergic LN odor panel experiments, our sample sizes are similar to those in previous
reports that perform similar experiments (Ignell et al., 2009; Oh et al., 2014; Badel et al.,
2016; Diaz et al., 2019; Zandawala et al., 2021). Before analyzing the data, a Gaussian
low-pass filter (sigma=1), bleach correction (exponential fit), and image stabilizer
algorithms were applied to the given trial’s raw AF/F signal. Calcium transients (AF/F)
were measured as changes in fluorescence (AF) normalized to baseline fluorescence (F,

averaged over the first 19 frames before odor delivery). By normalizing this way, we could
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ensure trivial effects of slight z-axis drifts, GCaMP concentration differences, and
variations in the tested neuron’s innervation density would be corrected. Responses were
pooled for each odor stimulus - and within concentration - by averaging the peak odor-
evoked calcium signal across multiple odor presentation trials (3 for OSNs; 4 for LNs).
We used the following formula to derive percent AF/F: [(the calcium transients within a
given glomerulus)/(the peak odor response averaged across the entire AL tested)] x
100%. A trial’s maximum response (Max %AF/F) refers to the average of five consecutive
frames centered around that trial’s peak response post stimulus presentation. Glomeruli
were manually identified post-hoc by comparing acquired images to well-defined three-
dimensional maps of the AL (Fishilevich and Vosshall, 2005; Grabe et al., 2015). Only the

glomeruli that were reasonably identifiable were considered for analysis.

Synthetic Myoinhibitory Peptide (synMIP) Application Experiments. Synthetic MIP
(synMIP; EPTWNNLKGMW-amide) was custom made by GenScript (Piscataway, NJ,
USA) at the highest purity available (>75%). The sequence we chose to use for synMIP
is identical to the sequence previous investigations have used when discerning the role
of MIP in the Drosophila circadian system (Oh et al., 2014). To test how synMIP
application adjusts odor-evoked responses, a 1,000uM working solution was made by
diluting a small portion of the lyophilized peptide in nuclease-free water (Thermo
Scientific, #R0581). After testing the initial odor-evoked responses of the neurons being
tested for a given experiment, the perfusion system was switched off momentarily so a
small portion of our synMIP working solution could be pressure injected into the AL to a
final concentration of 10uM. Ten minutes after synMIP pressure injection, the animal’s
odor-evoked responses were tested as before synMIP injection, and then the perfusion
system was switched back on. Ten minutes after turning the perfusion system back on,
the animal’s odor-evoked responses were once again tested as they were initially. Re-
testing the animal’s response to the test odor (103 2-heptanone) at the end of these
experiments could not be used as a reliable means for assessing prep health due to
changes in circuit member responses induced by modulator bath application. Therefore,
for these experiments no animal was tested for longer than the average time that animals

were reliably healthy in the MIPergic LN odor panel experiments (~90min). Furthermore,



120

we believe these preparations remain healthy throughout the entire experimental epoch
as DM2 ACV responses do not diminish over the course of the experimental epoch. The
resulting data were generally analyzed as outlined above, but we modified our procedure
for deriving percent AF/F such that the average peak response within that given
glomerulus to both ACV concentrations before synMIP application was used as the

dividend across treatment groups.

Quantification and Statistical Analyses. Statistical analyses were performed using R
(v.3.6.2) in R Studio (v.1.4.1103). Values to be analyzed were concatenated in Excel
before importing into the relevant analysis software. Statistical results are reported in text
and in each figure legend. All statistical tests were two-tailed. The ClustVis package was
used to hierarchically cluster (using Ward’s criteria) and perform PCA on individual
MIPergic LN innervation patterns. The “cor” function in the base R stats package and the
“rcorr” function in the Hmisc package were used to calculate statistically significant
Pearson’s correlation coefficients for MIPergic LN pairwise glomerular innervation
patterns. The ggpubr package’s “ggscatter” function was used to determine Pearson’s
correlation coefficients and p-values when assessing correlations between: (1)
effector/anti-MIP and MIPergic LN mCD8::GFP voxel density across all glomeruli, and (2)
MIPergic LN glomerular innervation frequency as a function of each glomerulus’ volume.
Adjusted R-squared values were calculated using the base-R stats package and
correspond to how well each data being assessed for the given correlation analysis fit a
linear model. The Shapiro-Wilk test was used to evaluate any deviations from a normal
distribution. We used an unpaired Student’s t-test with Welch’s correction to determine if
MIPergic LNs preferentially innervate glomeruli based on valence. A Kruskal-Wallis rank
sum test followed by a Dunn's test with a Bonferroni multiple comparisons correction was
used to determine if: (1) MIPergic LNs preferentially innervate based on the functional
group found along the odorant that activates the given glomerulus’ OR; and, (2) SPR-
GAL4::VP16 expression in antennae and maxillary palps between males, mated females,
and virgin females. A one-way ANOVA with a Bonferroni multiple comparisons correction
was used to assess statistically significant differences in: (1) SPR-T2A-GAL4 expression

in antennae and maxillary palps between males, mated females, and virgin females; and,
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(2) SPR-GAL4::VP16 expression in glutamatergic LNs between males, mated females,
and virgin females. Delta F/F analyses were carried out using the custom MATLAB scripts
previously described (Frank et al., 2015, 2017), and are depicted as mean £ SEM. To
assess max response (%AF/F) differences between OSN odor-evoked synMIP
treatments, we first determined if normality could be assumed (as above), then outliers
were determined using the “identify_outliers” function in rstatix package. If normality could
be assumed and no outliers were present, then an omnibus one-way repeated measures
ANOVA with a Greenhouse-Geisser sphericity correction was performed (“anova_test” in
rstatix). If max responses (%AF/F) were statistically different at each odor trial, then
pairwise paired t-tests with a Bonferroni multiple comparisons correction were performed
to identify which groups were statistically different. If normality could not be assumed,
then a Kruskal-Wallis rank sum test followed by a pairwise Mann-Whitney U test with a
Bonferroni multiple comparisons adjustment were performed. All boxplots display the
minimum, 25"-percentile, median, 75"-percentile, and 'maximum’ of the given data.
Additional analysis details are provided for each set of experiments above. Values are

given as means + SEM. Statistical significance is defined as p < 0.05.
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Figure 1. Myoinhibitory peptide is released by GABAergic patchy LNs in the AL.
(A) A protein-trap Trojan LexA driver for glutamic acid decarboxylase (GAD1), the rate-
limiting enzyme for GABA, highlights all myoinhibitory peptide (MIP) immunoreactive
neurons in the AL. Cell count estimates, n = 5 brains, 10 ALs.

(B) R32F10-GAL4 expression in the central brain and ventral nerve cord (VNC).

(C) R32F10-GAL4 highlights ~13.2 (+£0.68) AL neurons, which includes all MIP
immunoreactive neurons (~8.71£0.3 neurons) and ~4.5 (+0.68) non-MIPergic LNs. Cell
count estimates, n = 5 brains, 9 ALs.

(D) Representative individual MIPergic LNs reveals MIP is released by patchy LNs.
Arrow indicates a projection into the contralateral AL.

(E) Glomerular innervation patterns of 50 individual MIPergic LN clones organized by
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hierarchical clustering similarity. Each row represents the innervation pattern of a single
clone, and each column represents a given glomerulus. Although it is not explicitly
highlighted here, glomeruli do not cluster by “odor scene” as previously defined (Bates
et al.,, 2020). We note that in some cases a given clone might project into the
contralateral AL, but here only the ipsilateral innervation patterns were included for
analysis.

(F) All pairwise correlations of MIPergic LN innervation patterns between AL glomeruli.
Values correspond to the Pearson’s correlation coefficient.

In all cases: neuropil was delineated by anti-DN-Cadherin staining; scale bars = 10um.
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Figure 2. MIPergic LNs integrate and dispense signaling throughout the entire
AL.

(A) Individual MIPergic LNs project to different glomeruli from animal-to-animal.

(B) The MIPergic LN ensemble covers the entire AL in every animal.

(C) Do MIPergic LNs receive input from particular sets of glomeruli? Are there particular
sets of glomeruli subject to more/less MIPergic LN output than others?

(D) Representative image of glomerular voxel density analysis. Here, the effectors
synaptotagmin.eGFP (syt.eGFP; cyan) and DenMark (magenta) are expressed in all
MIPergic LNs, and the antennal lobe glomeruli (Ant. Lobe; grey) are delineated by anti-
DN-Cadherin immunostaining (see Methods). Glomeruli outlined in white.

(E) Effector (e.g., syt.eGFP, DenMark, or mCD8::GFP) or anti-myoinhibitory peptide
(anti-MIP; orange) puncta density per voxel within each AL glomerulus. Each indicator
is normalized to the highest value within that indicator. Data are represented as the
mean + SEM of each indicator's voxel density being measured within a given
glomerulus. For each indicator, n = 7 (syt.eGFP), 7 (DenMark), 4 (mCD8::GFP), 4 (anti-
MIP).

(F) Putative MIPergic LN mesh skeletons identified from the FlyEM FIB-SEM hemibrain
connectome volume. Values in the upper right-hand corner of each mesh skeleton are
that neuron’s synaptic flow centrality index (blue-green) and GMR32F10-GAL4
NBLAST similarity score (light brown).

(G) Putative MIPergic LN postsynaptic and presynaptic sites across all AL glomeruli
represented as a function of the total number of postsynaptic/presynaptic sites in each
putMIP LN. These data only consider putMIP LN connections within the ipsilateral AL.
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Figure 3. Anatomical inputs to putMIP LNs and functional glomerular outputs
from identified MIPergic LNs.

(A) Putative MIPergic LN upstream partners’ demographics. Data are represented as
a function of the total amount of input a putMIP LN receives from all categories.

(B) The amount of excitatory, inhibitory, and modulatory inputs each putMIP LN
receives within every glomerulus as a function of the total amount of inputs a given
putMIP LN receives within the glomerulus.

(C) Mean max responses (%AF/F) of MIPergic LN neurites in DM1, DM2, DM4, DP1m,
VA2, and VM2 in response to 1-hexanol (HEX), apple cider vinegar (ACV), ammonium
hydroxide, benzaldehyde (BENZ), geranyl acetate (GER. ACETATE), and 1-octen-3-
ol. Data are represented as the average max %AF/F over many animals and several
odor trials within each animal (4 trials). For each stimulus, n = 3-4 animals.

(D) Example traces of animal-to-animal variability in MIPergic LN glomerular responses
to 102 ammonium hydroxide. Each column represents three distinct animals, each row
corresponds to the glomerulus where GCaMP activity in MIPergic LN processes is
being measured, and each trace represents the within-animal response to the odor (the
average of 4 odor trials). For each glomerular response, scale bar = 100%AF/F.
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Figure 4. Downstream postsynaptic targets of each putMIP LN and representative
putMIP LN presynaptic terminals with dense core vesicles (DCVs).

(A) Demographics analysis of all putMIP LN postsynaptic targets by neuron type. Data
are represented as a function of the total amount of output a putMIP LN sends to all
categories.

(B) Representative images of DCVs present in a given putMIP LN’s presynaptic
terminal. From left to right: DCVs are found in putMIP LN presynaptic terminals
upstream of OSNs (blue), PNs (green), and ventral LNs (VLN; orange). These particular
examples include putMIP LNs 6, 14, and 19 with a DM1 OSN (blue) and a DC4
anterodorsal PN (green).

In all cases: white arrowheads indicate the putMIP LN’s presynaptic site; scale bars =
500nm.
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Figure 5. Widespread sex peptide receptor (SPR) expression throughout the AL.
(A) MIPergic LNs form synaptic connections with all principal neuron types in the AL,
OSNSs (cyan), PNs (orange and green), and other LNs (blue). Therefore, within a single
glomerulus, MIPergic modulation might target any one of these neuron types (so called,
“‘Non-combinatorial Hypothesis”), or multiple neuron types (“Combinatorial
Hypothesis”).

(B) Sex peptide receptor expression (magenta) as revealed using a CRISPR/Cas9
T2A-GAL4 insertion in the SPR coding intron.

(C) SPR-T2A-GAL4 colocalizes with the general glial marker reverse polarity (anti-
REPO; yellow).

(D) MCFO labeling using the SPR-T2A-GAL4 reveals expression in several glial
subtypes, including cortical, neuropil ensheathing, and tract ensheathing glia.

(E & F) SPR-T2A-GAL4 expression in OSNs housed in the third-antennal segment and
maxillary palp.

(G) SPR-T2A-GAL4 MCFO experiments where the antennal nerve remains intact
reveals SPR-expressing OSNs include those that belong to: DM2, DM5, VM5v, VM5d,
VM3, VA1d, VA1v, VA5, VA7m, VA7I, VM1, VM6, VM2, and VA2.

(H) SPR-T2A-GALA4 colocalizes with several neurons immunopositive for the proneural
marker embryonic lethal abnormal vision (anti-ELAV; cyan), a subset of which is also
positive for the glutamate marker, VGIutM%497° Trojan LexA (green).

() SPR-T2A-GAL4 MCFO experiments reveal SPR-expression in bilaterally-projecting
ventral glutamatergic LNs (GIutLNs). Bilateral projection indicated by the white arrow.
(J) SPR-T2A-GAL4 MCFO labeling reveals SPR-expression in several lateral and
anterodorsal PNs (white arrowheads), some of which were identifiable as belonging to:
VA7I, VC1, VC2, VA3, and DA4.

(K) Several (at least ~5) lateral LNs express SPR as identified through SPR-T2A-GAL4
MCFO labeling.

In all cases: neuropil was delineated by anti-DN-Cadherin staining; scale bars = 10um.



147

“BEFORE" “AFTER" “BEFORE" “AFTER"
Test Test 2 Test 2 t

Test Test Tes!
'l Perfusion OFF J§ Perfusion ON il * ' |l Perfusion OFF J§ Perfusion ON ff *
synMIP synMIP OFF synMIP synMIP OFF

10 min. 10 min. 10 min. 10 min.

B
= \
£ [ S S SR N N
A A A

-
[
|
|

;“
[

:
I

A A A A A A

Figure 6. Myoinhibitory peptide reduce OSN responses to apple cider vinegar
(ACV).

(A) OSN responses are initially tested under constant perfusion (Test 1; “BEFORE”),
then the perfusion system is shut off and synthetic MIP (synMIP) is pressure injected
into the AL. After a 10min incubation period, OSN responses are tested again (Test 2;
“‘DURING”), after which the perfusion system is turned back on. OSN responses are
tested once more after a 10min washout period (Test 3; “AFTER?”).

(B) DM1, DM2, DP1m, and VA2 OSN responses (mean + SEM) to 102 (left column)
and 10 (right column) ACV before 10um synMIP application (most left traces in each
column), 10min after 10um synMIP pressure injection (middle trace in each column),
and after a 10min washout epoch (far right trace in each column). Synthetic MIP
significantly decreases DM1 OSN responses independent of ACV concentration (black
bars; 102 p = 0.040, n = 8, BEFORE v. AFTER; 10%: p = 0.048, n = 6, BEFORE v.
AFTER; Bonferroni-corrected repeated-measures pairwise t-tests).

For B: 10%: n = 8 (DM1), 5 (DM2), 6 (DP1m), 6 (VA2); 10%: n = 6 (DM1), 4 (DM2), 5
(DP1m), 3 (VA2).
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In all cases: Traces represent mean + SEM of the data; scale bars = 100%AF/F;
repeated measures scatter plot represents each animal’s max response (%AF/F; black
dots) connected across treatments (black lines), and the mean of each test's max
response (%AF/F) across all animals (magenta dots and lines).
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(A) OSN-directed SPR knockdown relieves the effect of synMIP on DM1 and DM2 OSN
odor-evoked responses (DM1: 102 p = 0.11, n = 7; repeated-measures one-way
ANOVA; 10%: p = 0.06, n = 4, before v. during; p = 0.156, n = 8, before v. after;
Bonferroni-corrected repeated-measures pairwise Wilcoxon tests; DM2: 102 p =
0.678, before v. during; p = 0.102, before v. after, n = 7; Bonferroni-corrected repeated
measures pairwise t-tests; 10: p = 0.201, n = 7; repeated-measures one-way ANOVA).
For A: 10%: n =7 (DM1), 7 (DM2); 10%: n = 8 (DM1), 7 (DM2).

In all cases: Traces represent mean + SEM of the data; scale bars = 100%AF/F;
repeated measures scatter plot represents each animal’s max response (%AF/F; black
dots) connected across treatments (black lines), and the mean of each test's max
response (%AF/F) across all animals (magenta dots and lines).
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Figure S1. Myoinhibitory peptide (MIP) colabeling with transgenic markers for
GABAergic, cholinergic, and glutamatergic neurons in the Drosophila central
brain.

(A) MIPergic neurons in the antennal lobe (AL) (see Figure 1) and near the median
bundle (MBDL) colabel with glutamic acid decarboxylase 1 (GAD1). MIPergic neurons
in the superior medial and lateral protocerebrum (SMP and SLP, respectively) and near
the lateral medial lobula (LMlo) colabel with vesicular glutamate transporter (VGlut).
MIPergic neurons within the inferior contralateral interneuron cluster (ICLI) (Jiang et al.,
2013) and SEZ do not colabel for ChAT, GAD1, or VGlut, and are most likely
tyraminergic (Tyr) based on scRNA-seq data (Croset et al., 2018).

(B) Cartoon schematic summarizing data from A, wherein several populations of MIP-
immunoreactive neurons are also glutamatergic (MIP*-VGlut* neurons in the SMP,
LMilo, and SLP; magenta), two populations are also GABAergic (MIP*-GAD1* neurons
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in the MBDL and AL) (see also Figure 1), and no MIP-immunoreactive neurons are
cholinergic (colabel with ChAT).

Except for the ICLI interneurons, soma locations are labeled according to the closest
neuropil, or fascicle, according to established nomenclature (Ito et al., 2014).

In all cases: neuropil was delineated by anti-DN-cadherin staining; open arrowheads =
no colocalization; closed arrowheads = colocalization.
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properties of a given glomeruli’s olfactory receptor neuron(s).

(A) Dot plot representation of the frequency we find a given glomerulus is innervated
by a single MIPergic LN clone. Rectangles underneath each glomerulus’ name
represents the “odor scene” of that glomerulus (Bates et al., 2020). These are: alcoholic
fermentation (brown); yeasty (blue); fruity (faded green); decaying fruit (yellow); plant
matter (pink); animal matter (pale purple); pheromones (chartreuse); dangerous (red);
and, unknown (gray).

(B) MIPergic LNs do not preferentially innervate glomeruli whose activity has been
linked to attractive or aversive behavioral responses (p = 0.991, n = 13 (“attractive”), 16
(“aversive”), unpaired t-test with Welch’s correction).

(C) MIPergic LNs do not preferentially innervate glomeruli tuned to any particular
odorant molecules (p = 0.9455, Bonferroni-corrected Dunn's test). Odorant molecule
functional groups are color coded as follows: terpenes (magenta), ketones (purple),
esters (blue), aromatics (aqua marine), amines (chartreuse), aldehydes (green),
alcohols (brown), and acids (deep pink).

(D) Principal components analysis of MIPergic LN innervation patterns, where each
data point represents MIPergic LN innervation patterns for each glomerulus. Bar graph
represents the percentage of the variance explained by each principal component.

In all cases, boxplots display the minimum, 25"-percentile, median, 75"-percentile, and
'maximum’ of the given data.
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Supplementary Figure 3. MIPergic LNs co-innervate olfactory glomeruli and
individual MIPergic LNs innervate thermo-/hygrosensory glomeruli, suggesting
thermal and hygrosensory signals may integrate with olfactory signals in the
antennal lobe.

(A-B) On average, ~12 glomeruli are co-innervated by sister MIPergic LN clones. In
these examples, two distinct MIPergic LNs co-innervate DL2d and DP1I (respectively).
For comparing sister MIPergic LN co-innervation patterns, n = 5 brains.

(C) Single MIPergic LN branching in the dry-responsive glomerulus VP4 (formerly, “the
arm”; hatched outline).

(D) Neurites of a single MIPergic LN innervating the cold-responsive VP3 glomerulus
(hatched outline).

(E) An individual MIPergic LN innervating both the hot-responsive VP2 glomerulus
(hatched outline) and the column (arrowhead).

In all cases: neuropil was delineated by anti-DN-Cadherin staining; all scale bars =
10um.
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Supplementary Figure 4. The voxel density of synaptic polarity markers
expressed in MIPergic LNs generally scales with the voxel density of total
MiPergic LN cable within glomeruli.

(A) DenMark (a postsynaptic marker) voxel density variations across glomeruli are
significantly weakly correlated to the voxel density of total MIPergic LN cable within
each glomerulus (r = 0.38, p = 0.0098). However, variations in DenMark voxel density
across glomeruli do not correlate (adjusted R? = 0.12249).

(B) Synaptotagmin-eGFP (a presynaptic marker) voxel density variations across
glomeruli are significantly strongly correlated to the voxel density of total MIPergic LN
cable within each glomerulus (r = 0.75, p = 1.8x109).

(C) The voxel density of anti-myoinhibitory peptide immunoreactive punctate (anti-MIP)
is significantly correlated with the voxel density of total MIPergic LN neurite volume (r
=0.74, p = 5.1x10°9).

(D) The density of syt.eGFP in MIPergic LNs significantly scales with anti-MIP density
(p = 0.0091), but variations across glomeruli do not correlate (adjusted R?= 0.20567).

In all cases, each data point represents the normalized mean for indicator density within
each glomerulus and each line represents the linear regression model.
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Supplementary Figure 5. All putMIP LNs make reciprocal connections with all
other putMIP LNs.

(A-B) All putMIP LNs are synaptically connected to each other. Table of the number of
synapses from one putMIP LN to all other putMIP LNs.

(C-D) The amount of putative MIPergic LN reciprocal connectivity assessed within each
glomerulus. Heatmap of the amount of input a given putMIP LN receives from all other
putMIP LNs within every AL glomerulus as a function of the total amount of input that
putMIP LN receives within a glomerulus.
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A Mated Females Virgin Females

Supplementary Figure 6. SPR-GAL4::VP16 and SPR-T2A-GAL4 expression
throughout all primary sensory neurons.

(A) Expression patterns of the bacterial artificial chromosome derived element SPR-
GAL4::VP16 (cyan) and a CRISPR-Cas9 T2A-GAL4 insertion in the coding-intron of
the sex peptide receptor (SPR-T2A-GAL4, magenta) in all sensory afferents in mated
females, virgin females, and males. The left most diagram represents imaging plane
for all images to the right, wherein: 1-1"”” = auditory afferents; 2-2""” = olfactory,
thermal, and hygrosensory afferents; 3-3"”” = olfactory afferents; 4-4""” = gustatory
afferents; 5-5"” = visual afferents; 6-6"" = proprioceptive and gustatory afferents. Driver
expression in visual afferents and proprioceptive/gustatory afferents (in T1) were only
tested for SPR-T2A-GAL4. Arrowhead(s) in 2-2"” and 4-4"" highlight the few neurons
the express SPR-GAL4::VP16 in the third-antennal segment (olfactory, thermal, and
hygrosensory afferents), and the labellum (gustatory afferents), respectively. Neuron(s)



158

that innervate the sacculus, a thermal/hygrosensory organ in the third-antennal

segment, are presented in the insets in the top right of 2-2”.
In all cases, scale bar = 10um.



159

88kb Y e
attP40 T ITTY GAL4::VP16 | - N ool | ;
va P wale
" . J'&_-‘_ 0 5 10 15
4 . ; ‘ OSNs - Antennae
(/!
e
o Mated E_’° P
C"‘ Females e
.‘;" Male E—e

—_—————————
0.0 05 10 15 20 25
OSNs - Maxillary Palp

SPR-GAL4::VP16>MCFO

Cortical Glia Neuropil Ensheathing Glia Tract Ensheathing Glia

Transcnptlon
Translation

attP40

S3kb
B ser [N

Mated Virgin
0% Female Female

Male
SPR-GAL4::VP16>MCFO

Ventral LN lateral LN

J e \ ‘ I awr v

Supplementary Figure 7. SPR-GAL4::VP16 expression throughout central brain
circuitry with emphasis on AL expression.

(A) Sex peptide receptor expression (SPR; cyan) as revealed using a bacterial artificial
chromosome derived GAL4::VP16 element (Ameku et al., 2018). Note that this element
contains the SPR locus and much of the surrounding genomic locus (~88kb total), and
the GAL4::VP16 coding sequence was later inserted before the SPR stop site (Ameku
et al 2018). This element was then reintroduced at the attp40 landing site (Ameku et al
2018).

(B-D) SPR-GAL4::VP16 expression (cyan) in OSNs housed in the third-antennal




160

segment and maxillary palp. Female mating status does not affect the number of SPR-
GAL4::VP16-positive cells in antennae, but males have significantly more SPR-
GAL4::VP16-positive cells in their antennae than virgin females (antennal OSNs: virgin
vs. mated females: p = 0.942, n = 5; males vs virgin females: p = 0.025, n = 6 (males),
5 (virgin females); Dunn’s test with a Bonferroni multiple comparisons correction).
However, the number of SPR-GAL4::VP16-positive cells in the maxillary palp does not
differ based on sex or mating status (maxillary palp OSNs: p = 0.59, n = 5 (virgin
females), 5 (mated females), and 6 (males), Kruskal-Wallis rank sum test).

(E) SPR-GAL4::VP16 (cyan) colocalizes with the general glial marker reverse polarity
(anti-REPO; yellow).

(F) MCFO labeling using the SPR-GAL4::VP16 reveals expression in several glial
subtypes, including cortical, neuropil ensheathing, and tract ensheathing glia.

(G) Several ventral AL neurons are labeled through intersectional genetics experiments
between an EGFP-insertion in the endogenous non-coding intron of SPR (MiMIC
Cassette; magenta) and SPR-GAL4::VP16 (cyan).

(H) At least a portion of the ventral AL neurons labeled by SPR-GAL4::VP16 are ventral
glutamatergic LNs. The number of vesicular glutamate transporter-positive (VGlut®)
SPR-GAL4::VP16 neurons does not statistically differ based on sex or mating status (p
= 0.546, n = 8 (virgin females), 7 (mated females), and 8 (males), one-way ANOVA with
a Bonferroni multiple comparisons correction).

(I) Later MCFO experiments confirm SPR-GAL4::VP16 expression in ventral LNs, and
in at least one instance, a lateral LN and a ventral multiglomerular PN could be resolved.
(J) Skeleton representation of the aforementioned SPR-GAL4::VP16 multiglomerular
PN.

In all cases: neuropil was delineated with anti-DN-cadherin staining; all scale bar =
10um.
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Supplementary Figure 8. Sex peptide receptor (SPR) expression from scRNA-

sequencing data.

(A) SPR expression within Davie et al. (2018) scRNA-seq data. Olfactory projection
neuron (OPN) cluster boundaries redrawn from previously identified boundaries (Davie
et al.,, 2018).

(B) SPR expression within Croset et al. (2018) scRNA-seq data. OPN cluster
boundaries redrawn from previously identified boundaries (Croset et al., 2018).

(C) Expression levels (transcript counts per million, log scale) of known PN-
subpopulation markers, neurotransmitter enzymes/transporters, and SPR within each
OPN cluster.
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Supplementary Figure 9. Sex peptide receptor (SPR) expression from projection
neuron-specific scRNA-sequencing data.

(A) SPR expression within Li et al. (2017) scRNA-seq data. Anterodorsal and lateral
projection neuron (adPN & latPN, respectively) cluster boundaries redrawn from
previously identified boundaries (Li et al., 2017).

(B) Expression levels (transcript counts per million, log scale) of known PN-
subpopulation markers, neurotransmitter enzymes/transporters, and SPR within each
PN cluster.
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Supplementary Figure 10. Generation of a sex peptide receptor LexA::QFAD
driver line via dual microinjection of a Trojan exon construct and phiC31
recombinase.

(A) Cartoon depiction of MiIMIC cassette exchange for LexA::QFAD Trojan exon
cassette, and subsequent LexA::QFAD expression in all cells that produce the sex
peptide receptor (SPR).

(B) Crossing scheme used to establish SPRM3553.T2A-LexA::QFAD transgenics.
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(C) SPRMI13553.T2A-LexA::QFAD expression (cyan) in the larval central brain and
ventral nerve cord.

(D) SPRMI13%53_T2A- exA::QFAD expression (cyan) in the adult central brain. Note, the
In all cases, scale bars = 10um.
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CHAPTER 4

Serotonergic Metamodulation of Central Olfactory Processing
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(portions of this chapter are based on my publication Sizemore, T.R., Hurley, L.M., and
Dacks, A.M. (2020). Serotonergic modulation across sensory modalities. Journal of
Neurophysiology, 123, 6.)

ABSTRACT

The ability of any sensory system to efficiently and effectively switch between
which stimuli are salient to the animal’s ongoing needs is universal to all modalities.
Without the ability to shift between the various streams of stimulus information in this way,
a sensory system may become “locked-in” and the animal will likely fail to detect and
process stimuli that should far outweigh the stimuli currently most salient to the network
(e.g., the scent of a predator vs. the scent of food). Nervous systems typically use diverse
neuromodulators to rapidly and fluidly shift network operations toward relevant stimuli
according to the animal’s ongoing needs. These shifts can be potentiated and dynamically
adjusted further still when a neuromodulator modifies the actions of another modulator
(so called, “metamodulation”). Here, we reveal a novel metamodulatory pathway wherein
the neuromodulator serotonin (5-HT) directly acts on an ensemble of neuropeptidergic
LNs, the MIPergic LNs. Using driver and epitope knock-in transgenics and electron
microscopy (EM)-level analyses, we reveal all MIPergic LNs express the inhibitory 5-
HT1A receptor and receive direct synaptic input from the 5-HTergic CSD neurons. We
demonstrate that 5-HT decreases MIPergic LN odor-evoked responses independent of
glomerulus identity, which suggests 5-HT acts on MIPergic LNs to broadly inhibit their
activity. As MIP is implicated in the animal’s olfactory drive towards food-odors (Min et
al., 2016), and 5-HT decreases MIPergic LN responses to one such food-odor, this
suggests 5-HTergic metamodulation may exert a top-down contingency switch in AL
processing by adjusting MIPergic LN activity. However, further behavioral analyses will
need to be performed going forward to test this supposition.

INTRODUCTION

Neuromodulation is a universal feature of all nervous systems wherein modulatory
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chemicals adjust the biophysical and synaptic properties of individual neurons to support
the animal’s ongoing external demands and/or internal needs (Marder and Thirumalai,
2002; Bargmann, 2012; Marder, 2012; Bucher and Marder, 2013; Gutierrez and Marder,
2014; Marder et al., 2014; Nadim and Bucher, 2014; Alcedo and Prahlad, 2020). In doing
so, neuromodulators can expand the computational capacity of a given neural network to
ultimately endow the animal with tremendous behavioral flexibility (Harris-Warrick and
Marder, 1991; Kim et al., 2017; Alcedo and Prahlad, 2020; Flavell et al., 2020; Tsuda et
al., 2021). However, all networks are influenced by multiple neuromodulators released
from intrinsic/extrinsic neurons, whose collective concentrations at any given time can be
thought to represent the “modulatory tone” of the network at that time (Hurley et al., 2004;
Iwano and Kanzaki, 2005; Berg et al., 2009; Carlsson et al., 2010; Chalasani et al., 2010;
Jacob and Nienborg, 2018; Lizbinski et al., 2018; Nassel, 2018; Nassel and Zandawala,
2019). Much like how changes in the collective concentrations of intrinsic/extrinsic factors
can have profound consequences on a cell's development (Pearson and Doe, 2004; Doe,
2008), changes in even individual modulators can have profound consequences on the
network’s ability to rapidly/efficiently adjust activity. This has led to the supposition that
changes in a network’s modulatory tone may reflect grand shifts in the animal’s behavior
and/or state (Marder et al., 2014; Delaney et al., 2021). Moreover, given the profound
ability of a single neuromodulator to shift overall network states, a neuromodulator acting
on another neuromodulator can have long-lived and dramatic consequences in network
state and the animal’s behavior [e.g., (Chalasani et al., 2010)].

Metamodulation describes second-order neuromodulation, wherein one
neuromodulator influences the actions of another neuromodulator (Katz and Edwards,
1999). Such metamodulatory signaling can provide further logarithmic and nonlinear
flexibility to the neural network’s operations and has been demonstrated in disparate
networks, such as the Tritonia and crustacean motor systems (Katz and Edwards, 1999;
Edwards et al., 2002) and sensory systems (Lizbinski and Dacks, 2018; Flavell et al.,
2020). In olfactory systems, 5-HTergic metamodulation acts on interneuron-mediated
GABAergic modulation to differentially tune the gain of olfactory input to the brain
(Gaudry, 2018; Lizbinski and Dacks, 2018; Sizemore et al., 2020). For example, 5-HT
stimulates 5-HT2C expressing juxtaglomerular cells in the olfactory bulb (OB) to increase
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the amount of presynaptic inhibition exerted upon OSNs (Petzold et al., 2009). A similar
computation occurs in the insect antennal lobe (AL), wherein 5-HTergic metamodulation
attenuates afferent inputs by increasing LN-mediated GABAergic presynaptic modulation
(Dacks et al., 2009; Zhang and Gaudry, 2016). However, LNs in both the mammalian OB
and insect AL also release a diverse array of neuropeptides whose actions in each circuit
- for the most part - remains elusive (Baker, 1986; Blakemore et al., 2006; Carlsson et al.,
2010; Lepousez et al., 2010; Tobin et al., 2010; Siju et al., 2014). Therefore, this suggests
that in addition to modulating LN-mediated GABAergic modulation, 5-HT may also
modulate LN-mediated peptidergic modulation of olfactory processing in these systems.
In Aplysia motor systems and cell culture, 5-HT has been shown to frequently modulate
the actions of peptidergic modulation (whim and Lloyd 1992; Vilim et al 1996;). However,
5-HTergic metamodulation of peptidergic modulation (to the best of our knowledge) has
never been demonstrated in vivo in the olfactory system.

Here, we reveal a novel metamodulatory signaling pathway that likely “rebalances”
the level of olfactory input to the central brain. In accordance with our previous
observations (Sizemore and Dacks, 2016), we find that the MIPergic LNs exclusively
express the inhibitory 5-HT1A receptor subtype (see Chapters 2 & 3). Then, we leverage
the densely reconstructed hemibrain EM volume (Clements et al., 2020; Scheffer et al.,
2020) to demonstrate MIPergic LNs likely receive direct synaptic input from the sole
source of synaptic 5-HT in the AL, the CSDns. Moreover, we generally find that CSDn
input to these putative MIPergic LNs is concentrated in a food-odor associated glomerulus
we previously demonstrated is modulated by MIP-SPR signaling, DM1 (see Chapter 3).
We, then, tested whether 5-HT modulates MIPergic LN odor-evoked responses and find
that 5-HT attenuates MIPergic LN responses in all glomeruli tested independent of
glomerulus identity. This result is consistent with 5-HT1A Gai-coupling, as was
demonstrated when this receptor subtype was initially discovered in flies (Saudou et al.,
1992). Together, these results suggest that 5-HTergic metamodulation of MIPergic LN
modulation may underly a contingency-switch in AL state, based on the animal’s shifts in
satiation behaviors. However, this supposition requires further experimentation, which is

currently undergoing and will likely continue long past my time at WVU. Regardless, these
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results represent the first demonstration of 5-HTergic metamodulation of peptidergic
modulation in any primary olfactory center.

RESULTS
All MIPergic LNs Express the Inhibitory 5-HT1A Receptor

The MIPergic LNs are patchy GABAergic LNs that release the neuropeptide
myoinhibitory peptide (MIP) and form broad reciprocal connections with principal neurons
and their ensemble partners within every glomerulus, such as DM1 and DM2 (Figure 1A)
(see Chapter 3). Moreover, MIP signaling was previously found to decrease and increase
afferent responses in DM1 and DM2 (Figure 1B) (see Chapter 3), presumably in a
satiation-state dependent manner. However, are there mechanisms to circumvent
peptidergic modulation? We previously used protein-trap T2A-GAL4 insertions in the
endogenous 5-HT1A locus to demonstrate that all MIPergic LNs express the inhibitory 5-
HT1A receptor (Sizemore and Dacks, 2016) (Figure 1C). However, we sought to confirm
these results using animals with a CRISPR/Cas9-mediated hemagglutinin-tag (HA-tag)
insertion on the C-terminus of the 5-HT1A receptor (5-HT1A::HA) (Alekseyenko et al.,
2019). We find that 5-HT1A::HA signal colocalizes with ~9.28 + 0.52 neurons (n = 7
brains, 12 ALs) labeled by R32F10-GAL4, a driver we previously demonstrated
selectively labels MIPergic LNs within the AL (Figure 1D) (see Chapter 3). These
numbers agree with the total number of MIPergic LNs within the AL (see Chapter 3).
Altogether, these results suggest that 5-HT and MIP form a metamodulatory circuit
wherein 5-HTergic modulation decreases MIPergic LN activity (Figure 1E).

MiIPergic LNs Are Reciprocally Connected to the Serotonergic CSDns

The sole source of synaptic 5-HT within the Drosophila AL are the highly
conserved serotonin-immunoreactive deutocerebral neurons, or “CSDns” (Salecker and
Distler, 1990; Sun et al., 1993; Wegerhoff, 1999; Hill et al., 2002; Dacks et al., 2006; Roy
et al., 2007; Zhang and Gaudry, 2016; Coates et al., 2017, 2020). A single CSDn spans
the entire olfactory network (both ALs, both MB calyces, and both LHs), and less well-
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defined areas which integrate inputs from many modalities (both superior lateral
protocerebrums and antlers) (Roy et al., 2007; Coates et al., 2017, 2020; Suver et al.,
2019). Within the AL, the CSDns innervate different glomeruli to varying degrees and
differentially connect with the various principal neuron types from animal-to-animal
(Coates et al., 2017). Previous CSDn connectomic analyses from 9 glomeruli indicate all
principal neuron types are consistently targeted by the CSDn, but in each glomerulus the
CSDn chiefly targets LNs (Coates et al., 2020). However, recent evidence suggests that
CSDn synaptic connections are not necessarily required for some AL LNs to detect 5-HT
(Suzuki et al., 2020). Therefore, we took a more comprehensive and targeted approach
in order to determine whether MIPergic LNs receive direct CSDn synaptic input, or if
MIPergic LNs likely receive 5-HT from another source. To do so, we leveraged the
densely reconstructed hemibrain electron microscopy volume (Clements et al., 2020;
Scheffer et al., 2020) and our previously identified putative MIPergic LNs (putMIP LNs)
(see Chapter 3) to determine putMIP LN connectivity with the easily identifiable CSDn
(Figure 2A).

We first wondered how much of the CSDn’s overall output do putMIP LNs
represent, if they receive input from the CSDn at all. We, therefore, performed
downstream demographics analyses which indicate that the CSDn chiefly targets neurons
outside the AL such as those in the LH, MB calyx, nearly every protocerebral region, and
the antler (“Others”; ~22% of total output;) (Figure 2B). Within the AL, the CSDn targets
all principal neuron types to various degrees, these are: ~2% (OSNs), ~6% (PNs), and
~10% of total output to non-putMIP LNs (Figure 2B). We find that putMIP LNs represent
the majority of CSDn output amongst AL targets (~16% of total CSDn output) (Figure
2B). It's notable that a non-insignificant amount of total CSDn output remains
unidentifiable (~42% of total CSDn output) (Figure 2B), and therefore our results may be
overestimates. Regardless, these results demonstrate that putMIP LNs do receive
synaptic input from the CSDn, and that putMIP LNs represent the CSDn'’s greatest targets
within the AL.

We wondered whether CSDn input to putMIP LNs were focused in certain olfactory
channels more than others. If this were the case, this would suggest 5-HTergic
modulation targets specific odor-response properties of MIPergic LNs. Alternatively, if
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CSDn input to putMIP LN were evenly distributed over the putMIP LN'’s processes across
all glomeruli, then 5-HT may serve to alter MIPergic LN odor-responses across the entire
AL. We find that CSDn input to putMIP LNs is generally greatest in the V glomerulus (218
synapses total), DM1 (120 synapses total), DM4 (101 synapses total), DP11 (84 synapses
total), and DL2d (79 synapses total) (Figure 2C). These glomeruli have been associated
with several aspects of food-odors, such as alcoholic fermentation (V and DP1l), decaying
fruit volatiles (DL2d), and yeast volatiles (DM1 and DM4) (Bates et al., 2020b). This
suggests that 5-HTergic modulation likely targets MIPergic LN food-odor responses. In
contrast, glomeruli where putMIP LNs generally receive no/little CSDn input include VM2
(0 synapses), VC3l and VL2a (1 synapse each), and DA4m and DA4l (2 synapses each)
(Figure 2C). These glomeruli are mostly associated with aversive olfactory stimuli (VC3,
DA4m, and DAA4l), which suggests that 5-HT does not target MIPergic LN responses to
aversive stimuli for modulation. Altogether, these results indicate 5-HTergic modulation
of MIPergic LNs generally targets appetitive (as opposed to aversive) stimulus responses.

In addition to the aforementioned general CSDn-to-putMIP LN connectivity, we
also noted several instances where putMIP LNs synapsed back onto the CSDn across
several glomeruli (Figure 2D). These putMIP LN-to-CSDn connections were largest in
the V glomerulus (41 synapses), DM4 (41 synapses), DL2d (41 synapses), DL1 (41
synapses), and DC1 (41 synapses) (Figure 2D). Interestingly, these general putMIP LN-
to-CSDn connections scale linearly with the amount of CSDn-to-putMIP LN connections.
That is to say, generally, if putMIP LNs receives a large amount of input from the CSDn
within a glomerulus, they are generally likely to provide more output to the CSDn. In
contrast, we found no putMIP LN synapses onto the CSDn in DA4m, VM2, VM3, or VM7d
(Figure 2D). The lack of putMIP LN-to-CSDn synapses in VM2 and VM3 contrasts with
previous connectomic analyses that found the CSDns receive ~60-62% of their LN input
in these glomeruli from presumed patchy LNs (Coates et al., 2020). However, this
discrepancy likely owes to several features, such as: (1) several glomeruli (19 glomeruli)
are truncated within the hemibrain (Schlegel et al., 2021), and (2) the presumed patchy
LNs found in this previous work are not necessarily MIPergic patchy LNs. Regardless, all
of these results together demonstrate that MIPergic LNs and the CSDn form direct and
reciprocal synaptic connections to one another. Moreover, this CSDn “reciprocity motif”
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appears to be generalizable across different neuron types and animals, as previous
connectomic results found the CSDn forms reciprocal connections to every target neuron
(Coates et al., 2020).

Serotonin Decreases MIPergic LN ACV-Responses Across Glomeruli

To this point, we have demonstrated: (1) all MIPergic LNs express the inhibitory 5-
HT1A serotonin receptor subtype (Figure 1); and, (2) putative MIPergic LNs receive direct
synaptic input from the CSDn, and represent the CSDn’s greatest downstream target
within the AL (albeit based on synapse number) (Figure 2). We previously demonstrated
that MIPergic LNs are robustly and consistently activated by the innately attractive food-
associated odor apple cider vinegar (ACV), and MIP signaling directly decreases and
indirectly increases OSN ACV-evoked responses in the food-odor associated glomeruli
DM1 and DM2 (see Chapter 3). As the only 5-HTR expressed by MIPergic LNs is the
inhibitory 5-HT1A (Sizemore and Dacks, 2016), and CSDn input to putMIP LNs in DM1
is generally substantial (see above) (Figure 2), we wondered if 5-HT would decrease
MiPergic LN odor-evoked responses in glomeruli where MIP signaling had been found to
modulate OSN responses (see Chapter 3).

To test whether 5-HT can alter MIPergic LN odor-evoked responses in ACV-
responsive glomeruli, we first recorded from MIPergic LNs in these glomeruli before,
during, and after 5-HT bath application (see Methods) (Figure 3A). We chose to use this
approach, as oppose to stimulating CSDns while recording from MIPergic LNs, to avoid
confounds from potential CSDn co-transmitter(s) whose identity remains elusive (Figure
S1) (Sizemore et al., 2020). However, after laborious effort | was able to identify a LexA
driver line that is restrictive to the MIPergic LNs, and establish a novel transgenic for
conditional disruption of 5-HT1A production, that may enable such future experiments
(Figure S1). We find that before 5-HT application MIPergic LN neurites within DM1, DM2,
and DP1m robustly respond to ACV, which on average persists in most glomeruli after 5-
HT application (the “during” test) (DM1: p = 0.111, n = 3; DP1m: p = 0.051, n = 3;
Bonferroni-corrected repeated measures one-way ANOVA) (Figure 3B). This was not the
case in DM2, where MIPergic LN odor-evoked responses were significantly affected by



173

5-HT application (p = 0.036, before vs. during, n = 3; Bonferroni-corrected pairwise paired
t-tests). Then, after the washout period (the “after” test) MIPergic LN neurite ACV-
responses are significantly diminished most glomeruli (DM1: p = 0.048, n = 3; DM2: p =
0.03, n = 3, before vs. after; Bonferroni-corrected pairwise paired t-tests) (Figure 3B).
Although not significant, MIPergic LN neurite responses in DP1m are noticeably
diminished by 5-HT application, which may become significant as more animals are
tested (i.e., failure of significance likely caused by low power). Regardless, these results
suggest, therefore, that 5-HT acts to decrease MIPergic LN odor-evoked responses
(albeit directly or polysynaptically) independent of glomerulus identity. Moreover, these
results suggest that 5-HT may act to halt or decrease MIPergic modulation of food-
associated olfactory channels (i.e., DM1) perhaps in accordance with the animal’s
satiation-state. However, this supposition and how MIPergic LN-expression of 5-HT1A
contributes to serotonin’s metamodulatory effects here, remain to be tested. Please note,
that we attempted to test whether 5-HT diminishes MIPergic LN dense core vesicle
(DCV)-release using two different peptide release sensors: preproANF-EMD (Rao et al.,
2001) and NPRR-ANP (Ding et al., 2019). However, we were unable to resolve DCV-
trafficking or peptide release (i.e., decrease in fluorophore puncta) with either sensor,
most likely due to weak expression levels of either sensor when used in combination with

our driver.

DISCUSSION

Altogether, our data reveal a novel metamodulatory signaling pathway which has
the capacity to inhibit a neuropeptide signaling pathway that mediates olfactory gain
control. We have shown that all MIPergic LNs express the inhibitory 5-HT1A receptor
subtype, and receive direct synaptic input with the AL’s sole source of synaptic 5-HT, the
CSDns. Moreover, we find that this synaptic input is generally strongest in glomeruli
whose cognate odor-scenes correspond to several food-odor features, such as
fermentation (the V glomerulus) and yeast volatiles (DM1 and DM4) (Bates et al., 2020b).
Then, we demonstrate that 5-HT decreases MIPergic LN odor-evoked responses across
the food-odor associated glomeruli, such as DM1. We previously determined that MIP-
SPR signaling modulates the gain of DM1 OSN odor-evoked responses independent of
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odor concentration (see Chapter 3). Before that, behavioral analyses independently
performed revealed that the activity of these OSNs - and MIP itself - plays a key role in
the animal’s odor-evoked behavioral responses (see below). Thus, 5-HTergic modulation
of MIPergic modulation may contribute to a key circuit switch for behavioral attraction vs.
aversion. Below, we expand upon the important features and potential consequences of
this metamodulatory signaling pathway as implicated by this work.

Consequences of Metamodulation: From Circuit Logic to Behavior

Modulators, such as neuropeptides, can rapidly and dynamically transform neural
network computations over extended epochs and typically do so in accordance with the
animal’'s ongoing needs (De Bono and Bargmann, 1998; Blakemore et al., 2006;
Chalasani et al., 2010; Flavell et al., 2013; Komuniecki et al., 2014; Maeda et al., 2015;
Kim et al., 2017; Nocera et al., 2019). These modulators can work in a concerted and/or
antagonistic manner together to bring about dramatic shifts in network and behavioral
output. For example, 5-HT and the neuropeptide pigment dispersing factor (PDF)
mutually inhibit and inversely control C. elegans food-search activity (Sawin et al., 2000;
Ben Arous et al., 2009; Flavell et al., 2013; Iwanir et al., 2016; Ji et al., 2020). Here, a
single chemosensory processing neuron (AlA) (Chalasani et al., 2007; Dobosiewicz and
Bargmann, 2019) acts on both 5-HTergic (NSM & HSN) and PDF-releasing (AVB)
neurons differentially based on the chemosensory cues regarding food abundance in the
environment (Fujiwara et al., 2002; Flavell et al., 2013; McCloskey et al., 2017; Ji et al.,
2020). When food is plentiful, input from the chemosensory neuron to the 5-HTergic
neurons (and inhibitory neurons that impinge on the PDF-releasing neuron) are strongest,
thus producing a “dwelling” behavioral state (Ji et al., 2020). Conversely, when food-odor
and intake diminish, output from the chemosensory neuron diminishes and inhibitory
interneurons suppress 5-HT release (Ji et al., 2020). Even further, the PDF-releasing
neurons, now free from the inhibition driven by the chemosensory neuron’s activity,
become engaged in circuit operation and eventually produce a long-lasting “roaming”
state (Flavell et al., 2013; Ji et al., 2020). In this way, the nematode’s overall locomotor

activity (dwell vs. roam) can dictated by the antagonistic actions of two separate
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modulators.

Although our circuit motif differs (here, 5-HT directly acts on the peptidergic
neurons), our results suggest a similar terminal consequence may exist. We demonstrate
that 5-HT decreases the odor-evoked responses of MIPergic LNs, whose cognate peptide
(MIP) modulates the gain of olfactory afferent responses (see Chapter 3). Myoinhibitory
peptide was previously found to be necessary and sufficient to decrease the fly’'s
attraction to food-odors and their motivation to feed (as measured via proboscis extension
assays) (Min et al., 2016). These behavioral analyses therefore suggest that MIP plays a
vital role in the fly’s drive towards food, such that when the animal is starved MIP signaling
decreases and starvation-contingent behavioral programs initiate (albeit in parallel or one-
after-the-other). Consistent with this, we previously found that MIP significantly diminishes
OSN food-odor evoked responses independent of odor concentration (see Chapter 4).
Moreover, the glomerulus where these previous results were resolved — DM1 — can be
selectively activated (independent of other olfactory channels) and evoke an attractive
behavioral response (Bell and Wilson, 2016). Thus, if 5-HT’s effects are sufficiently strong
enough to halt MIPergic LN MIP-release, then 5-HT may be used here to return each
MIPergic modulated olfactory channel to “baseline”. This would be a useful and efficient
mechanism to bias AL neuronal activity to a more food-odor sensitive state in situations
when the animal is hungry. In this situation, perhaps 5-HT is tonically released and scales
linearly with the animal’s increasing hunger, eventually reaching a “tipping point” where
anorexic-like behaviors are induced. Moreover, since 5-HT acts on other AL neurons
through many receptors (Dacks et al., 2009; Sizemore and Dacks, 2016; Zhang and
Gaudry, 2016), it is plausible that this 5-HTergic metamodulation could efficiently switch-
off MIP-induced food-odor avoidance while simultaneously increasing the activity of circuit
elements that drive food-odor induced attraction (e.g., disinhibition of DM1 OSNs,
increase sensitivity of food-odor sensitive PNs, etc.). Although some of these specific
hypotheses are (admittedly) highly-speculative and will need to be followed up in future
studies, these results may represent the critical circuit elements of a metamodulatory
pathway that impactfully adjusts olfactory processing. As MIPergic LNs likely play several
computational roles within the AL (indeed, we previously uncovered circuit topologies
indicative of lateral inhibition and output gain modulation), 5-HT likely has the capacity to
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adjust nearly every aspect of AL processing simply by acting on this one ensemble.
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Key Resources Table
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REAGENT
RESOURCE

or

SOURCE

IDENTIFIER

Antibodies

Rat anti-DN-Cadherin

DSHB, University of lowa

Catalog #: DN-Ex #8;
RRID: AB_528121

Mouse anti-Bruchpilot

DSHB, University of lowa

Catalog #: nc82; RRID:
AB_ 2314866

Rabbit anti- | Christian Wegener (by way of | RRID: AB_2314803

Myoinhibitory ~ Peptide | Manfred Eckert)

(MIP)

Chicken anti-GFP Abcam Catalog #: ab13970;
RRID: AB_300798

Rabbit anti- | Cell Signaling Technology Catalog #: 3724; RRID:

Hemagglutinin

AB_1549585

Rabbit anti-serotonin Immunostar Catalog #: 20080

RRID: AB 572263
Donkey  anti-Chicken | Jackson ImmunoResearch | Catalog #: 703-545-155;
AlexaFluor 488 Laboratories, Inc. RRID: AB_2340375
Donkey anti-Rabbit | Thermo Fisher Scientific, CA Catalog #: A-10040;
AlexaFluor 546 RRID: AB_2534016
Goat anti-Rabbit | Thermo Fisher Scientific, CA Catalog #: A-21070;
AlexaFluor 633 RRID: AB_2535731
Goat anti-Mouse | Thermo Fisher Scientific, CA Catalog #: A-21050;
AlexaFluor 633 RRID: AB_2535718
Donkey anti-Rat | Abcam Catalog #: ab150155
AlexaFluor 647

Experimental Models: Organisms/Strains

w;; GMR32F10-GAL4

Bloomington Stock Center

RRID: BDSC_49725

w; GMR32F10-LexA

Bloomington Stock Center

RRID: BDSC_53565

w 10xUAS-IVS-
mCD8::GFP

Bloomington Stock Center

RRID: BDSC_32186

yw, 10xUAS-IVS-
mCD8::RFP,
13xLexAop-
mCD8::GFP

Bloomington Stock Center

RRID: BDSC_32229

W, 20xUAS-IVS-

Bloomington Stock Center

RRID: BDSC_42747

GCaMPof
W, 3xUAS-
FLPGS5.PEST

Bloomington Stock Center

RRID: BDSC_55808
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w';; ChAT MI04508 Trojan
LexA::QFAD/TM6B, Tb'

Bloomington Stock Center

RRID: BDSC_60319

y'w’;CyO/Sp"; Dr'/TM3,

Bloomington Drosophila Stock
Center

RRID: BDSC_59967

Sb!

M1 ATPSE8.80/0y0 > | This study. N/A

y'w*; 5-HT1A-T2A- | Herman Dierick, Baylor College | Gnerer et al., 2015

GAL4MI01140 of Medicine

y'w*; 5-HT1A-T2A- | Herman Dierick, Baylor College | Gnerer et al., 2015

GAL4MI01468 of Medicine

y'w*; 5-HT1A-T2A- | Herman Dierick, Baylor College | Gnerer et al., 2015

GAL4MI04464 of Medicine

5-HT1A::HA E. Kravitz, Harvard University | Alekseyenko et al., 2019
(by way of Olga Alekseyenko, | Flybase ID:
Harvard University) FBal0353540

Odors

Paraffin olil J.T. Baker, VWR CAS #: 8012-95-1

Apple cider vinegar | Heinz N/A

(ACV)

Recombinant DNA

pFlpStop-attB-UAS-2.1-
tdTom

Fisher et al., 2017

Addgene: #88910

Oligonucleotides

Orientation-MiL-F:
GCGTAAGCTACCTTA
ATCTCAAGAAGAG

Venken et al., 2011

N/A

FRTspacer_5p_rev:
AAATGGTGCAAAGAG
AAGTTCC

Fisher et al., 2017

N/A

FRTspacer_3p_for:
ACAATCCAGCTACCA
TTCTGC

Fisher et al., 2017

N/A

Molecular Biology Reagents/Chemicals

Serotonin (5-HT)

Santa Cruz Biotechnology

Catalog #: SC-201146A

OneTaq DNA

Polymerase

New England BioLabs

Catalog #: M0480L

5x OneTaq Standard
Reaction Buffer

New England BioLabs

Catalog #: B9022S

Deoxyribonucleotide
(dNTP) solution

New England BioLabs

Catalog #: N0447L

Nuclease-free water

New England BiolLabs

Catalog #: B1500L

Software and Algorithms

VAA3D (v.3.20)

| Peng et al., 2010

| RRID: SCR_002609
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FluoRender (v.2.22.3) Wan et al., 2017 RRID: SCR 014303

FIJI (v.2.0.0) Open-Source RRID:SCR _002285

R Studio (v.1.4.1103) Open-Source www.rstudio.com

MATLAB 2016b MathWorks www.mathworks.com

Python 3 Open-Source RRID: SCR_008394

CorelDRAW 2021 Corel Corp. www.corel.com

Adobe lllustrator 2020 | Adobe Inc. www.adobe.com

natverse Bates et al., 2020; Schlegel et | https://natverse.org/

al., 2021

Connectome- Stuart Berg (JRC) N/A

neuprint/neuprint-

python

CloudVolume William Silversmith (Princeton) | https://github.com/seung
-lab/cloud-volume

Contact for Reagent and Resource Sharing. Further information and reasonable
requests for reagents and resources should be directed to - and will be fulfilled by - the
Lead Contact, Andrew M. Dacks (andrew.dacks@mail.wvu.edu).

Experimental Model and Subject Details. Flies were reared on standard cornmeal and
molasses media at 24°C and under a 12:12 light:dark cycle. Equal numbers of male and

female animals were used when possible, excluding live-imaging experiments.

Immunocytochemistry, Image Acquisition and Image Analyses. All
immunocytochemistry was performed generally as previously described (Sizemore and
Dacks, 2016) (also see Chapter 3). Briefly, samples were dissected, fixed in 4%
paraformaldehyde, then washed with phosphate buffered saline with 0.5% Triton-X 100
(PBST) several times before taking samples through an ascending-descending ethanol
was series, then blocking in 4% IgG-free BSA (Jackson Immunoresearch; Cat#001-000-
162). Samples were then incubated in primary antibody (see Key Resources Table)
diluted in blocking solution and 5mM sodium azide. Following primary antibody incubation
samples were washed with PBST, blocked, and incubated in secondary antibody diluted
in blocking solution and 5mM sodium azide. Finally, samples were washed, cleared using
an ascending glycerol series (40%, 60%, 80%), and mounted on well slides in

Vectashield® (Vector Laboratories, Burlingame, CA; Cat#H-1200). Images were
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collected and analyzed as previously described (Sizemore and Dacks, 2016), with the
exception of images captured with a 40x/1.25 Silicone UPlanSApo Olympus objective.

Hemibrain Connectomics Analyses. All connectome analyses leveraged the densely
reconstructed Janelia FlyEM Drosophila hemibrain electron microscopy volume (version
1.2; https://neuprint.janelia.org/) (Clements et al., 2020; Scheffer et al., 2020), and
recently described analysis suites (Bates et al., 2020a; Schlegel et al., 2021). All
connectomics analyses were performed as previously described (see Chapter 3). Briefly,
we identified putative MIPergic LNs (putMIP LNs) based on several previously described
stringent criteria. The CSDns were identified based on neuPrint’'s associated bodyid
‘name” and the neuron’s easily identifiable and highly-conserved neuronal architecture
(Dacks et al., 2006). These CSDn bodyids were later confirmed by generating a NBLAST
morphological similarity score between our query skeleton (“putative” CSDns) and
GMRG60F02-GAL4, a driver previously demonstrated to contain the CSDns (Singh et al.,
2013). Please note that although both CSDns are present within the hemibrain dataset,
only synaptic connections from the contralateral CSDn are considered here as the
ipsilateral CSDn makes little-to-no connections within the only AL included in the

hemibrain.

in vivo Calcium Imaging — animal preparation. All calcium imaging experiments were
performed on female flies ~1-5 days post-eclosion at room temperature, and are generally
exactly as described in Chapter 3. Animals of the proper genotype were collected and
briefly anesthetized on ice. Once anesthetized, an animal was affixed to a custom-built
holder with UV curable glue (BONDIC, M/N: SK8024). Our custom-built holder consists
of a sheet of aluminum foil with a small hole (the imaging window) affixed to a 3D-printed
design derived from similar designs described previously (Weir et al., 2016). Once
mounted, a small window exposing the dorsal side of the brain was created, and covered
with filtered recording saline (in mM: 2 CaCl2, 5 KCI, 5 HEPES, 8.2 MgClI2, 108 NaCl, 4
NaHCO3, 1 NaH2PO4, 10 sucrose, and 5 trehalose; adjusted pH: ~7.4) (Root et al.,
2008). Following this, the air sacs, fat bodies, and trachea covering the dorsal side of the
brain were removed with fine forceps. With the exception of minimal epochs during 5-HT
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bath application (see below), the brain was continuously perfused with oxygenated
(95%02/5%C02) recording saline using a Cole-Parmer Masterflex C/L (M/N: 77120-62)
at a rate of ~2mL/min.

in vivo Calcium Imaging — Image Acquisition. Functional imaging data were acquired
using the same custom-built system previously described (see Chapter 3). Briefly, we
used a Prior Scientific Open Stand (M/N: H175) microscope mounted on Prior Scientific
motorized translational stage (M/N: HZPKT1), and equipped with an Olympus 10x/0.30
UPlanFL N objective and an Olympus 60x/1.00 LUMPIlanFL N water-immersion objective.
A 470nm CoolLED pE-100 (CoolLED Ltd., Hampshire, UK) was used as the light source.
Each trial was captured with a Hamamatsu ORCA-4.0LT camera (Hamamatsu
Phototonics, Hamamatsu, Japan), and consists of 40 1,024x1,024 frames acquired at a
frame rate of ~9 Hz.

in vivo Calcium Imaging - Odor Preparation and Delivery. All odors were prepared
and delivered as previously described (see Chapter 3). Here, all odor concentrations are
reported as v/v dilutions in paraffin oil (J.T. Baker, VWR #JTS894), or autoclaved and
twice-filtered distilled water (for diluting acids). For example, 102 dilution indicates that
one volume of an odor is diluted with 100 volumes of paraffin oil. Dilutions were prepared
in 2mL odor vials (SUPELCO; P/N: 6020) that contained a final volume of 1mL of diluted
odor in paraffin oil every other day, or after two experiments (whichever came first). Odors
were presented as previously described (Bhandawat et al., 2007; Hong and Wilson, 2015;
Jeanne et al., 2018). Briefly, a carrier stream of carbon-filtered, dehumidified, air was
presented at 2.2 L/min to the fly continuously through an 8mm Teflon tube placed ~1cm
away from the fly. A three-way solenoid (The Lee Company, P/N: LHDA1231315H)
diverted a small portion of the airstream (0.2 L/min) through the headspace of an odor
vial for 200ms after triggering an external voltage command (TTL pulse) at frame 20 of
the trial. Considering the above, the odor is diluted further (by 10-fold) prior to delivery to
the animal. The odor stream joined the carrier stream 11cm from the end of the tube, and
the tube opening measured ~4mm.

Methods for assessing preparation health and performing multiple odor trials
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generally conform to previous work (Hong and Wilson, 2015; Jeanne et al., 2018). At the
start of each experiment, the animal was presented a test odor (103 2-heptanone) to
assess the preparation’s health. Only the data collected from animals whose responses
to this test odor were initially robust were used for further analysis. As 5-HT bath
application likely causes network-wide changes in odor-evoked responses (Dacks et al.,
2009; Zhang and Gaudry, 2016), the test odor was only initially presented to animals used
for 5-HT application experiments, so their initial olfactory response health could be
assessed. However, it's notable that no animal was tested longer than the duration of the
MIPergic LN odor panel experiments previously discussed (see Chapter 3). Each
experiment consisted of four odor trials per a preparation which were then averaged to
attain a within-animal response. These within-animal averages were subsequently
averaged across many animals for subsequent statistical analysis, and “n” is reported as
the number of animals. Each odor trial consisted of five 200ms pulses of odor with a 1Tms
interpulse interval. The same odor was never presented twice within 2min to prevent
depletion of the odor vial's headspace. Air entered and exited each odor vial through a
PEEK one-way check valve (The Lee Company, P/N: TKLA3201112H) connected to the
vial by Teflon tubing. The odor delivery tube was flushed with clean air for 2min when
changing between odors/concentrations. As an additional preemptive measure, all odor
delivery system components were hooked up to the house vacuum line overnight.

in vivo Calcium Imaging — Data Analysis. All calcium imaging data were analyzed as
previously described (see Chapter 3). That is, we made use of a custom-made script
graciously provided by Marco Gallio (Northwestern University) and has been described
previously (Frank et al., 2015, 2017) to analyze all calcium imaging data. With the
exception of any preparations that violated the aforementioned criteria (e.g., movement,
diminishing prep health, etc.), no data points or outliers were excluded from our analyses.
Generally, the number of flies to be used for experiments are not a limiting factor,
therefore no statistical power analyses were used to pre-determine sample sizes.
Regardless, our sample sizes are similar to those in previous reports that perform similar
experiments (Dacks et al., 2009; Zhang and Gaudry, 2016; Suzuki et al., 2020). Before
analyzing the data, a Gaussian low-pass filter (sigma=1), bleach correction (exponential
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fit), and image stabilizer algorithms were applied to the given trial’s raw AF/F signal.
Calcium transients (AF/F) were measured as changes in fluorescence (AF) normalized to
baseline fluorescence (F, averaged over the first 19 frames before odor delivery). By
normalizing this way, we could ensure trivial effects of slight z-axis drifts, GCaMP
concentration differences, and variations in the tested neuron’s innervation density would
be corrected. Responses were pooled for each odor stimulus - and within concentration
- by averaging the peak odor-evoked calcium signal across multiple odor presentation
trials (4 trials). We used the following formula to derive percent AF/F: [(the calcium
transients within a given glomerulus)/(the peak odor response averaged across the entire
AL tested)] x 100%. A trial's maximum response (Max %AF/F) refers to the average of
five consecutive frames centered around that trial's peak response post stimulus
presentation. Glomeruli were manually identified post-hoc by comparing acquired images
to well-defined three-dimensional maps of the AL (Fishilevich and Vosshall, 2005; Grabe
et al., 2015). Only the glomeruli that were reasonably identifiable were considered for

analysis.

Serotonin Bath Application Experiments. Serotonin (see Key Resources Table) was
prepared daily and/or every four hours on ice and under strict low-light protocols (Dacks
et al., 2009) to ensure amine concentrations were as intended when tested. To test how
5-HT application adjusts odor-evoked responses, a 10-3M working solution was made by
diluting a small portion of the amine in nuclease-free water (Thermo Scientific, #R0581).
After testing the initial odor-evoked responses of the neurons being tested for a given
experiment, the perfusion system was switched off momentarily so a small portion of our
5-HT working solution could be pressure injected into the AL to a final concentration of
10M. This final concentration was chosen in accordance with similar experiments
previously reported in flies (Dacks et al., 2009; Zhang and Gaudry, 2016; Suzuki et al.,
2020) and other insects (Kloppenburg and Hildebrand, 1995; Mercer et al., 1995;
Kloppenburg et al., 1999; Dacks et al., 2008). Ten minutes after 5-HT pressure injection,
the animal’s odor-evoked responses were tested as before 5-HT injection, and then the
perfusion system was switched back on. Ten minutes after turning the perfusion system
back on, the animal’s odor-evoked responses were once again tested as they were
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initially. Re-testing the animal’s response to the test odor (10-® 2-heptanone) at the end
of these experiments could not be used as a reliable means for assessing prep health
due to changes in circuit member responses induced by modulator bath application. The
resulting data were generally analyzed as outlined above, but we modified our procedure
for deriving percent AF/F such that the average peak response within that given
glomerulus to ACV presentation before 5-HT application was used as the dividend across
treatment groups.

5-HT1AFIPStor ND Generation. The 5-HT1AFPSop ND fly |ine was established using
previously described injection methods (Fisher et al., 2017). Briefly, pFlpStop-attB-UAS-
2.1-tdTom and ®C31 helper plasmid DNA were co-injected into y'w’; Mi{MIC}5-
HT1AMI01140 - Resultant flies were crossed to y'w’;CyO/Sp'; Dr'/TM3, Sb' flies, and
screened for loss of the yellow rescue construct from the MiMIC construct. pFlpStop-attB-
UAS-2.1-tdTom (Addgene #88910) was a gift from Thomas Clandinin (Stanford
University). Embryo injections (“MiMIC injection — Service A’) were performed by
Rainbow Transgenic Flies, Inc. (Camarillo, CA). PCR-verification of the FIpStop construct
orientation was performed using a previously described primer set (Venken et al., 2011;
Fisher et al., 2017) (see Key Resources Table). Genomic DNA were extracted from a
small number of flies using previously described methods (Gloor et al., 1993) and PCR
conditions for construct orientation confirmation were: denaturation at 94°C for 10min.,
40 cycles at 94°C for 30sec., 51°C for 30sec., and 72°C for 60sec., followed by a post-

amplification extension at 72°C for 10min.

Quantification and Statistical Analyses. Statistical analyses were performed using R
(v.3.6.2) in R Studio (v.1.4.1103). Values to be analyzed were concatenated in Excel
before importing into the relevant analysis software. Statistical results are reported in text
and in each figure legend. All statistical tests were two-tailed. The Shapiro-Wilk test was
used to evaluate any deviations from a normal distribution. Delta F/F analyses were
carried out using the custom MATLAB scripts previously described (Frank et al., 2015,
2017), and are depicted as mean + SEM. To assess max response (%AF/F) differences
between MIPergic LN odor-evoked 5-HT treatments, we first determined if normality could
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be assumed (as above), then outliers were determined using the “identify_outliers”
function in rstatix package. If normality could be assumed and no outliers were present,
then an omnibus one-way repeated measures ANOVA with a Greenhouse-Geisser
sphericity correction was performed (“anova_test” in rstatix). If max responses (%AF/F)
were statistically different at each odor trial, then pairwise paired t-tests with a Bonferroni
multiple comparisons correction were performed to identify which groups were statistically
different. If normality could not be assumed, then a Kruskal-Wallis rank sum test followed
by a pairwise Mann-Whitney U test with a Bonferroni multiple comparisons adjustment
were performed. All boxplots display the minimum, 25"-percentile, median, 75%"-
percentile, and 'maximum’ of the given data. Additional analysis details are provided for
each set of experiments above. Values are given as means + SEM. Statistical significance
is defined as p < 0.05.
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Figure 1. All MIPergic LNs express the inhibitory 5-HT1A receptor.

(A-B) MIPergic LNs (magenta) differentially act on DM1 and DM2 OSNs (blue-green)
to decrease and increase their odor-evoked responses, respectively. In doing so,
MIPergic LNs can decrease and increase olfactory output (orange) from each
glomerulus concordantly.

(C) Three independent protein-trap T2A-GAL4 insertions within the endogenous 5-
HT1A locus (cyan) label all MIPergic AL LNs (magenta).

(D) Signal from 5-HT1A::HA (cyan) colocalizes with ~9.28 + 0.52 MIPergic LNs as
revealed through R32F10-GAL4, a driver previously demonstrated to selectively label
MIPergic LNs (see Chapter 3). Cell count estimates, n = 7 brains, 12 ALs.

(E) Together, these results suggest 5-HTergic modulation acts on MIPergic modulation
within the Drosophila AL.

In all cases: neuropil was delineated by anti-DN-Cadherin staining; scale bars = 10um.
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Figure 2. The serotonergic CSDn forms reciprocal synaptic connectivity with all
putative MIPergic LNs.

(A) CSDn mesh skeleton (cyan) identified from the FIyEM FIB-SEM hemibrain
connectome volume. Black arrowhead = CSDn branches within the AL.

(B) Donut chart of CSDn downstream partners’ demographics as function of CSDn
overall output. Data are represented as a function of the total amount of output the
CSDn sends to all categories.

(C) CSDn synaptic output to each putMIP LN by glomerulus across the entire AL.

(D) Putative MIPergic LN synaptic output onto the CSDn by glomerulus across the
entire AL.
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Figure 3. Serotonin decreases MIPergic LN odor-evoked responses to apple cider
vinegar (ACV) in most glomeruli tested.

(A) MIPergic LN odor-evoked responses are initially tested under constant perfusion
(Test 1; “BEFORE”"), then the perfusion system is shut off and 5-HT is pressure injected
into the AL. After a 10min incubation period, MIPergic LN odor-evoked responses are
tested again (Test 2; “DURING”), after which the perfusion system is turned back on.
MIPergic LN responses are tested once more after a 10min washout period (Test 3;
“‘AFTER”).

(B) MIPergic LN neurites in DM1, DM2, and DP1m (mean + SEM) odor-evoked
responses to 102 ACV before 104 5-HT application (most left traces), 10min after 10um
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5-HT pressure injection (middle traces), and after a 10min washout epoch (far right
traces). Serotonin significantly decreases MIPergic LN neurites’ responses in DM1
(before vs. after: p = : p = 0.048, n = 3; Bonferroni-corrected repeated-measures
pairwise t-tests) and DM2 (before vs. during: p = 0.036, n = 3; before vs. after: p = 0.03,
n = 3; Bonferroni-corrected repeated-measures pairwise t-tests).

In all cases: n = 3; traces represent mean + SEM of the data; scale bars = 100%AF/F;
repeated measures scatter plot represents each animal’s max response (%AF/F; black
dots) connected across treatments (black lines), and the mean of each test’'s max
response (%AF/F) across all animals (cyan dots and lines).
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Figure S1. The CSDns do not express choline acetyltransferase and tools for
future experiments.

(A) A protein-trap T2A-LexA::QFAD knockin within choline acetyltransferase (ChAT;
magenta) does not label the CSDns (as delineated with anti-5HT staining; cyan). This
suggests the CSDns do not release acetylcholine.

(B) Intersectional genetics between a 5-HT1A T2A-GAL4 protein-trap knockin (cyan)
and R32F10-LexA (green) reveal 100% of R32F10-LexA neurons are 5-HT1A positive.
Cell count estimates, ~8.5 + 0.40 neurons, n = 6.

(C) Original (unmodified) gel and brightness/contrast adjusted (B/C adjusted) gel image
of PCR confirmation of 5-HT1A FIpStop transgene orientation, where each lane
corresponds to: (1) genomic DNA + MiL-F + 5pRP, (2) genomic DNA + MiL-F + 3pFP,
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and (3) diluted DNA-only control (no polymerase, dNTPs, etc.). All genomic DNA
depicted were extracted from the same “founder” lineage. The ~247bp band in lane 1
suggests FIpStop cassette integration occurred and is in the “Non-Disrupting”
orientation. Values to the right of the gels correspond to base pair values derived from
the DNA ladder.

(D) To test (in vivo) the orientation of the FlpStop cassette in founders from (C), we
crossed these flies to a GAL4 which produced no tdTomato signal (data not shown).
This suggests that the FIpStop cassette is not in the “Disrupting” orientation. Then, we
crossed these flies to animals where a Flp recombinase is constitutively expressed in
R32F10-GAL4 positive neurons. This produced several tdTomato-positive neurons,
suggesting the FIpStop cassette is in the “Non-Disrupting” orientation. Inset: two AL
LNs where the 5-HT1AFPStop ND transgene was induced, thus producing tdTomato
(magenta).

(E) Schematic of the theoretical logic for conditional disruption of 5-HT1A via FlpStop
induction. Here, the FlpStop cassette (grey backbone) remain inactive within an intron
of 5-HT1A. While 5-HT1AFPSop ND s in the non-disrupting orientation, the splice
acceptor (orange) and stop signals (stop codons and transcriptional terminators;
scarlet) are inverted, ignored (and eventually spliced-out), thus avoiding transcriptional
disruption until the transgene is induced. When the Flp recombinase is induced/present
it can act on the FRT sites (light grey) to invert the once non-disruptive elements, which
are then locked into this position by the FLEx switch (Schnutgen et al., 2003). In this
“disrupting locked” orientation, the splice acceptor and stop signals are available, thus
disrupting expression of 5-HT1A transcription from the allele and eventual translation.
Moreover, cells where 5-HT1AFPStop_ND hag been induced (light magenta background)
can be identified during or post hoc by visualizing tdTomato signal (magenta stars).

In all cases: neuropil was delineated by anti-DN-Cadherin staining; scale bars = 10um.
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CHAPTER 5

Discussion and Future Directions
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(portions of this chapter were published in my publication Sizemore, T.R., Hurley, L.M.,
and Dacks, A.M. (2020). Serotonergic modulation across sensory modalities. Journal of

Neurophysiology, 123, 6.)

My dissertation addresses three main questions regarding the mechanisms of
serotonergic modulation of one sensory modality, olfaction. | began by establishing a
“functional atlas” of which principal neuron types express which of the five serotonin
receptors (5-HTRs) in the Drosophila primary olfactory center, the antennal lobe (AL)
(Chapter 2). Here, | found that each 5-HTR is expressed by specific subsets of neurons,
suggesting serotonin (5-HT) targets multiple levels of olfactory processing. Generally, the
inhibitory 5-HTRs are expressed by inhibitory neurons, while excitatory 5-HTRs are
expressed by excitatory neurons. This suggests serotonin’s effects on olfactory
processing within the AL are mediated by a combination of network-wide disinhibition and
glomerulus-specific enhancement. Later, in my final data chapter, | leveraged this
“functional atlas” to determine how the activity of one serotonin receptor shapes the
activity of a specialized neuropeptidergic signaling pathway (Chapter 4). | found that,
despite having a uniform effect on this peptidergic ensemble of interneurons, serotonin
could have non-uniform consequences across two glomeruli (namely, DM1 and DM2).
However, before | could address how the activity of this serotonin receptor adjusts the
activity of this neuropeptidergic pathway, | had to determine how this neuropeptidergic
pathway shapes olfactory processing (Chapter 3). | determined the identity, connectivity,
odor-tuning properties of the presynaptic local interneurons (LNs) that release this
neuropeptide (myoinhibitory peptide, MIP), as well as the downstream MIP receptor
expressing partners. Additionally, | demonstrate that MIP has divergent effects on the
odor-evoked responses of olfactory receptor neurons (OSNs) across different glomeruli,
wherein some OSN odor-evoked responses are decreased (DM1) while others are
boosted (DM2). Altogether, my work establishes several key insights that expand our
understanding of neuromodulation of sensory processing.

Below, | will expand on these findings and relate them to similar results found
across sensory modalities and across disparate taxa. | will end with several looming

questions that future investigators should seek to resolve.
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i. Serotonergic Modulation of Olfactory Processing

Olfactory networks across disparate taxa are innervated by and modulated by the
actions of 5-HTergic neurons (Gaudry, 2018; Lizbinski and Dacks, 2018; Sizemore et al.,
2020). These neurons can be heterogeneous in nearly every way and often target
different principal neuron types through a diversity of 5-HTRs (Sizemore et al., 2020). For
example, the vertebrate olfactory bulb (OB) is innervated by Median and Dorsal Raphe
Nuclei (MRN and DRN) serotonergic neurons with varying intrinsic properties, which can
have multifaceted consequences for their effects on downstream 5-HTR expressing
neurons, like periglomerular, juxtaglomerular, and short axon cells (Mclean and Shipley,
1987; Appel et al., 1990; Shen et al., 1993; Tecott et al., 1993; Wright et al., 1995; Waeber
et al., 1998; Watts and Fink, 1999; Bai et al., 2004; Lucaites et al., 2005; Petzold et al.,
2009). For instance, 5-HT stimulates 5-HT2C expressing juxtaglomerular cells in the OB
to increase the amount of presynaptic inhibition exerted upon OSNs (Petzold et al.,
2009). In doing so, 5-HT reduces the gain of OSN responses and thus the amount of
sensory input entering the OB (Petzold et al., 2009). Like in the OB, the Drosophila AL
is differentially innervated by a single source of synaptic 5-HT (the CSDns) that can act
on nearly every principal neuron type (Dacks et al., 2006; Sizemore and Dacks, 2016;
Coates et al.,, 2017). For example, | found that OSNs express the 5-HT2B receptor,
excitatory and inhibitory PNs/LNs generally express excitatory and inhibitory 5-HTRs
(respectively) (Sizemore and Dacks, 2016) (Chapter 2). These results have since been
independently substantiated from single cell-RNA sequencing (Li et al., 2017; Deanhardt
et al., 2021; McLaughlin et al., 2021) and electrophysiology experiments (Suzuki et al.,
2020). My results also provide mechanisms for earlier calcium imaging experiments
wherein the stimulus-evoked responses of various principal AL neuron populations were
assessed before and after 5-HT application (Dacks et al., 2009). For instance, in the
aforementioned study, 5-HT application was found to increase LN-mediated GABAergic
inhibition of OSN terminals (Dacks et al., 2009), and my results show that ~12 GABAergic
LNs express the excitatory 5-HT7 (Sizemore and Dacks, 2016). Therefore, 5-HT (in this
instance) likely increases the excitability of these GABAergic LNs by activating their 5-



207

HT7 receptors, consequently decreasing OSN input. Altogether, these examples
demonstrate that general future efforts to understand how a given modulator acts in a
neural circuit must consider the modulator’s receptor(s) distribution within the circuit. That
is to say, the identity of the neuromodulatory molecule itself is mostly dispensable; the
effect of any neuromodulator on a cell is dictated by the receptor type/subtype(s)
expressed by that cell.

ii. Peptidergic Modulation of Olfactory Processing

Despite their rich abundance across all nervous systems, the mechanism of
neuropeptidergic modulation of sensory processing has largely been understudied.
Recent technological advances have enabled studies that seek to resolve peptidergic
modulatory mechanisms, such as my previously described work (Chapter 3) and recent
work in the olfactory bulb. In the olfactory bulb, the neuropeptide somatostatin (SST) is
released by calretinin-positive GABAergic LNs and sparse GABAergic deep short-axon
cells (Lepousez et al., 2010a). Here, SSTergic LNs form reciprocal synapses with several
mitral cells (2"%-order relay neurons) and other inhibitory LNs, both of which differentially
express the four SST receptors found in the central nervous system (SSTR1-4) (Videau
et al., 2003; Martel et al., 2015; Nocera et al., 2019). Moreover, SST signaling through at
least one of these receptors (SSTR2) has been shown to play a critical role in the animal’'s
ability to detect and discriminate between olfactory stimuli (Lepousez et al., 2010b;
Lepousez and Lledo, 2013; Nocera et al., 2019). Similarly, | find that MIP is released by
GABAergic LNs that form reciprocal synapses with OSNs, PNs, non-MIP LNs, and other
MiIPergic LNs. The MIP receptor (sex peptide receptor, or SPR) is similarly broadly
distributed across AL principal neurons, but is also expressed by several food-odor
responsive OSNSs.

MIP-SPR signaling was previously found to control the fly’s sensitivity to food-
associated odors and drive to search for food (Min et al., 2016). These investigators found
that inactivating all MIPergic neurons increases the animal’s drive for food-derived odors
in a T-maze assay (Min et al., 2016). This effect was replicated in similar experiments
performed with MIP-genetic null mutants and could be reversed by MIP overexpression
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in all MIP neurons in this mutant background (Min et al., 2016). In contrast, increasing
MIP transmission significantly alters the animal’s drive for food-odors - so much so that
they display odor-induced aversion (Min et al., 2016). These behavioral observations, are
consistent with my finding that individual MIPergic LNs significantly co-innervate several
food-odor associated glomeruli and neurons from several of these glomeruli express
SPR. Moreover, | find that MIP-SPR signaling significantly diminishes odor-evoked
responses from food-odor associated glomeruli (DM1) regardless of odor concentration.
As DM1 activation has been shown to elicit potent behavioral attraction (Semmelhack
and Wang, 2009; Bell and Wilson, 2016) and MIP-null mutants display significantly
greater behavioral attraction to food-odors (Min et al., 2016), my results suggest that the
MIPergic AL LNs signaling circuit may represent one of likely several neural substrates
whose actions underly the animal’s switch in satiety-state driven behaviors. However,
future work will need to be done to specifically determine whether MIPergic LN-derived
MIP signaling contributes to odor-evoked behavioral responses.

iii. Metamodulation: Large Consequences via Simple Manipulations

To the best of my knowledge, 5-HTergic modulation of peptidergic modulation has
not been explored in the OB. In addition to SST, the neuropeptides vasoactive intestinal
peptide (VIP), substance P, neuropeptide Y (NPY), vasopressin, and cholecystokinin
(CCK) are present in the OB (Fallon and Seroogy, 1985; Baker, 1986; Seroogy et al.,
1987; Blakemore et al., 2006; Lepousez et al., 2010a; Tobin et al., 2010). Moreover, the
OB is innervated by 5-HTergic fibers from the MRN and DRN (Muzerelle et al., 2016; Ren
et al., 2018; Huang et al., 2019). Although whether these neuropeptide-releasing
populations express 5-HTRs has not been determined (to the best of my knowledge),
work in other modalities has revealed that 5-HT acts on neuropeptide-releasing neurons
and in doing so might have significant behavioral consequences. For instance,
interneurons of the vertebrate sensory cortex that release vasoactive intestinal peptide
(VIP) also express the excitatory ionotropic 5-HT3 receptor (Lee et al., 2010; Rudy et al.,
2011; Cardin, 2018). Activating 5-HT3 receptors in VIP interneurons causes a

hyperpolarization in 5-HT3-negative inhibitory interneurons, which subsequently
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disinhibits pyramidal neurons (Pfeffer et al., 2013; Jiang et al., 2015; Takesian et al.,
2018). Moreover, serotonergic stimulation of VIP interneurons also produces a latent,
GABAg-receptor mediated hyperpolarization in these same pyramidal cells (Takesian et
al., 2018). Therefore, by acting through these interneurons, serotonin can have a large
impact on network dynamics and even modulate distinct aspects of sensory processing
(Pi et al., 2013). Moreover, the activity of the VIP interneurons appears to be at least one
determinant for the changes observed in the activity of visual cortex circuitry according to
the animal’s ongoing behavioral state (Bennett et al., 2013; Polack et al., 2013; Fu et al.,
2014; Pakan et al., 2016; Batista-Brito et al., 2017). Collectively, these results suggest
that there may be a serotonin-induced contingency switching module in visual cortex,
wherein the animal’s locomotor activity induces 5-HTergic activation of VIP interneurons.
Then, perhaps after some epoch post-behavior initiation, negative feedback terminates
this serotonin-induced module.

My result that 5-HT uniformly inhibits MIPergic LN odor-evoked responses across
food-odor associated glomeruli is one of few examples of 5-HTergic metamodulation of
olfactory processing. | previously demonstrated that MIPergic LNs are robustly and
consistently activated by a food-associated odor, and that MIP application differentially
affects afferent input to the relevant olfactory channels. Therefore, several plausible
consequences might arise from 5-HTergic modulation of MIPergic modulation here. For
instance, if 5-HT’s effects are sufficiently strong enough to halt MIPergic LN MIP-release,
then 5-HT may be used here to return each MIPergic modulated olfactory channel to
“baseline”. This would be a useful and efficient mechanism to bias AL neuronal activity to
a more food-odor sensitive state in situations when the animal is hungry. In this situation,
perhaps 5-HT is tonically released and scales linearly with the animal’s increasing hunger,
eventually reaching a “tipping point” where anorexic-like behaviors are induced.
Moreover, since 5-HT acts on other AL neurons through many receptors (Dacks et al.,
2009; Sizemore and Dacks, 2016; Zhang and Gaudry, 2016), it is plausible that this 5-
HTergic metamodulation could efficiently switch-off MIP-induced food-odor avoidance
while simultaneously increasing the activity of circuit elements that drive food-odor
induced attraction (e.g., disinhibition of DM1 OSNSs, increase sensitivity of food-odor

sensitive PNs, etc.). Although some of these specific hypotheses will need to be followed
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up by my successors, my results represent the key beginnings of a metamodulatory
pathway that may impactfully adjust olfactory processing. Future investigators should
seek to determine whether 5-HT1A expression in MIPergic LNs is required for 5-HT to

initiate this switch in behavioral drive.

Future Directions

In Chapter 2, | determined the numbers of each principal AL neuron type that
expresses each of the five 5-HT receptors. However, while this methodology can tell me
if a neuron expresses/recently expressed a given 5-HTR, it could not tell me where along
the given neuron any particular 5-HTR localizes. Moreover, these methods rely on 5-HTR
expression induction of GAL4 which then induces GFP expression, and a single GFP
molecule has a half-life ~26 hours (Corish and Tyler-Smith, 1999). Thus, it is plausible
that a given neuron was identified as being 5-HTR positive long after that 5-HTR was no
longer expressed. However, my results have been independently substantiated since
their publication (Coates et al., 2017; Li et al., 2017; Suzuki et al., 2020; Deanhardt et al.,
2021; McLaughlin et al., 2021). Regardless, several questions remain:

1) What glomeruli do 5-HTR expressing neurons innervate? Are all glomeruli
innervated by at least one 5-HTR expressing neuron?

2) If a neuron expresses multiple 5-HTRSs, are these receptors expressed in different
neuronal compartments (e.g., axons, etc.)? Does this spatial pattern of 5-HTR
expression hold true for all neurons that co-express the same combinations of 5-
HTRs?

3) How does 5-HTR expression evolve over the development of the animal? Do
neurons express different receptor subtypes at different stages of the animal’s life?

4) How much of the context-dependent effects of 5-HT arises from the heterogeneous
nature of 5-HTergic neurons? How much arises from different 5-HTR expression
motifs?

5) What sexual dimorphisms exist in 5-HT signaling substrates (e.g., 5-HTergic
neurons, 5-HTR distribution, etc.)?
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6) How do the properties of 5-HTergic neurons and expression patterns of 5-HTRs
change in response to different external and/or internal demands?

7) Do invertebrate 5-HTRs homodimerize and/or heterodimerize like vertebrate 5-
HTRs have been noted to do [e.g., (Xie et al., 1999)]? And, if so, how does this
change their ligand affinities, time-course of action, influence on the neuron, etc.?

8) How does 5-HTR autoreceptor and heteroreceptor activity [e.g., (Sizemore et al.,
2020)] influence 5-HTergic modulation of sensory processing?

In Chapter 3, | described a novel peptidergic signaling pathway that mediates
olfactory gain control. | determined that MIP is released by GABAergic LNs that — as
individuals — innervate a different compliment of olfactory channels from animal-to-animal.
However, these MIPergic LNs reliably innervate all glomeruli across all animals.
Moreover, | determined the identity of each synaptic input to and postsynaptic partner
that connects with each of my stringently selected putative MIPergic LNs. | identified
which downstream partners express the MIP receptor (SPR) and are therefore subject to
MIPergic modulation, and then | tested the odor-evoked responses of one SPR-
expressing population to one stimulus at multiple concentrations. Through this “simple
case study” of OSN ACV-evoked responses, | demonstrated that MIP adjusts the gain of
OSN input to glomeruli involved in processing the innately attractive odor ACV. However,
several questions remain and should be followed up by future investigations. These
include (but are not limited to):

1) What factor(s) underly the animal-to-animal differences in individual MIPergic LN
innervation patterns?

2) Do MiPergic LNs have different connectivity from animal-to-animal?

3) How do MIPergic LNs respond across a larger odor panel, that include odors that
activate very few glomeruli (e.q., cis-vaccenyl acetate, wasp pheromone, etc.)?

4) Do individual MIPergic LNs display differing biophysical and electrophysiological
properties from animal-to-animal? If you record from a large enough sampling, can
you identify the same MIPergic LN based on odor-tuning properties from somatic
electrophysiology recordings?
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5) Are individual MIPergic LNs electrotonically isolated, as was suggested by
anatomical evidence included here? For instance, can you detect somatic current
changes if you selectively activate a single MIPergic LN’s processes in a
glomerulus?

6) How does MIPergic modulation affect other SPR-expressing neurons that were not

tested here?

In Chapter 4, | show that all MIPergic LNs express the 5-HT1A receptor and make
robust reciprocal connections with the CSDn. | show that 5-HT uniformly diminishes
MiPergic LN odor-evoked responses in DM1 and DM2, two glomeruli whose activation is
necessary and sufficient to initiate an odor-evoked attractive behavioral program. These
results suggest that 5-HT, by manipulating this single circuit node, can efficiently and
effectively transform olfactory driven behaviors. Questions that should be followed up by

future investigations include (but are not limited to):

1) What external stimuli and/or internal demands drive the release of 5-HT onto
MIPergic LNs?

2) How is odor-evoked behavior influenced by MIPergic LN expression of 5-HT1A?
Does decreasing MIPergic LN 5-HT1A expression alter olfactory behaviors?

3) Do MiIPergic LNs constantly express similar levels of 5-HT1A? Does 5-HT1A
preferentially localize to any particular compartments of MIPergic LNs?

4) If 5-HT1A protein concentrations along MIPergic LN neurites could be measured,
is the concentration of 5-HT1A uniform along MIPergic LN fibers within every

glomerulus?

Conclusion

The near-ubiquitous presence of neuromodulators (such as 5-HT) within sensory
regions, coupled with their strong effects on stimulus representation, suggest that these
signaling pathways should be considered integral components of all sensory systems.
Regardless of modality or species, 5-HTergic systems are heterogeneous at the level of
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individual neurons, as well as diverse at the level of whole populations. Moreover, the
suite of 5-HT receptors further expands the means with which 5-HT affects select
features, such as odor coding. These heterogeneous features of the 5-HT system allow
for widespread, nuanced effects of 5-HT on sensory processing that vary in a context
dependent manner. Subsequently, these heterogenous features also complicate
assignments of a singular role for serotonin. However, 5-HTergic modulation is
widespread throughout the animal kingdom, and currently the majority of our
understanding regarding the cellular mechanisms underlying 5-HTergic modulation of
sensory processing comes from a handful of organisms (e.g., rodents, fruit flies, etc.). By
comparing across modalities and diverse taxa, we can reveal convergent adaptations that
reveal fundamental molecular, cellular and network mechanisms of sensory modulation.
Similar approaches might also reveal divergent adaptations that reveal the selective

pressures that sculpt neuromodulation.
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Abbreviation / Acronym

Meaning

5-HT Serotonin (5-hydroxytryptophan)
5-HT1A Serotonin Receptor subtype 1A
5-HT1B Serotonin Receptor subtype 1B
5-HT2A Serotonin Receptor subtype 2A
5-HT2B Serotonin Receptor subtype 2B
5-HT2C Serotonin Receptor subtype 2C
5-HT3 Serotonin Receptor subtype 3
5-HT4 Serotonin Receptor subtype 4
5-HTS5B Serotonin Receptor subtype 5B
5-HT6 Serotonin Receptor subtype 6
5-HT7 Serotonin Receptor subtype 7
5-HT8 Serotonin Receptor subtype 8
5-HTR(s) Serotonin Receptor(s)
ACV Apple Cider Vinegar
adPN(s) Anterodorsal Projection Neuron(s)
AL(s) Antennal Lobe(s)
a-amino-3-hydroxy-5-methyl-4-

AMPA receptor(s) isoxazolepropionic acid receptor(s)
*an ionotropic glutamate receptor*

AstB / Ast-B Allatostatin-B
ATP Adenosine Triphosphate
BENZ Benzaldehyde
Brp Bruchpilot
BSA Bovine Serum Albumin
Cas9 CRISPR-associated protein 9
ChAT Choline Acetyltransferase
CRISPR Clustered Regulatolgyt/a llirr:’ijerrosrpr)]?gzde s::trst
CSD / CSDn(s) The Contralaterally Projecting, Serotonin-

Immunoreactive Deutocerebral Neuron(s)



D1 receptor(s)

Dopamine-1 receptor(s)

D2 receptor(s)

Dopamine-2 receptor(s)

DCV(s) Dense Core Vesicle(s)
DenMark Dendrite Marker
DFN Dorsal Flexion Neurons
DRN Dorsal Raphe Nucleus
DSI Dorsal Swim Interneurons
ELAV Embryonic Lethal Abnormal Vision
eLN(s) Excitatory/ Electrlcally—ﬁ]c;g frizi rl(_)(;c(:s)l
EM Electron Microscopy
ePN(s) / e-PN(s) Excitatory Projection Neuron(s)
EPSP(s) Excitatory Postsynaptic Potential(s)
Gai-signaling G-protein alpha-i signaling
GABA Gama Aminobutyric Acid
GABAx Gama Aminobutyric Amd;jgtcyeppet%r
GABAs Gama Aminobutyric Amd;jgg/epr;tog

GER. ACETATE

Geranyl Acetate

GFP

Green Fluorescent Protein

GIutLN(s) Glutamatergic Local Interneuron(s)
GPCR(s) G-Protein Coupled Receptor(s)
GR(s) Gustatory Receptor(s)
HA Hemagglutinin
HEX 1-Hexanol
ICLI Inferior Contralateral Interneurons
iLN(s) Inhibitory Local Interneuron(s)
IP3 Inositol Triphosphate

iPN(s) / i-PN(s)

Inhibitory Projection Neuron(s)

IPSP(s)

Inhibitory Postsynaptic Potential(s)



IR(s)

lonotropic Receptor(s)

latLN(s) Lateral Local Interneuron(s)
latPN(s) Lateral Projection Neuron(s)
LexAop LexA-Operator Sequence
LH Lateral Horn
LMlo Lateral Medial Lobula
LN(s) Local Interneuron(s)
LOM-MIP Locusta migratoria Myoinhibitory Peptide
MB Mushroom Body
MBDL Median Bundle
MCFO Multicolor Flp Out
MiMIC Minos-Mediated Insertion Cassette
MIP Myoinhibitory Peptide
mIALT Mediolateral Antennal Lobe Tract
MOD-1 Modulation of Locomotion Defective-1
MP Maxillary Palp
mPN(s) Multiglomerular Projection Neuron(s)
MRN Median Raphe Nucleus
MsMIP Manduca sexta Myoinhibitory Peptide
MSN(s) Medium Spiny Neuron(s)
NBLAST Neuron BLAST
NCAD DN-Cadherin
NGS Normal Goat Serum
NPF Neuropeptide F
NPY Neuropeptide Y
NPY Neuropeptide Y
OR(s) Olfactory Receptor(s)



Olfactory Sensory Neuron(s) / Olfactory

OSN(s)/ ORN(s) Receptor Neuron(s)
P/N Part Number
P2X2 P2X Purinoreceptor 2
PBS Phosphate Buffered Saline
PBST Phosphate Buffered Saline with Triton-X
PC1 Principal Component 1
PC2 Principal Component 2
PCA Principal Components Analysis
PDF Pigment-Dispersing Factor
Pea-MIP Periplaneta Myoinhibitory Peptide
PEEK Polyether Ether Ketone
pepLN(s) Peptidergic Local Interneuron(s)
PLC Phospholipase C
PN(s) Projection Neuron(s)

preproANF-EMD

GFP-tagged Atrial Natriuretic Factor

PTSP-1

Prothoracicotropic hormone-1

REPO Reverse Polarity
RFP Red Fluorescent Protein
RMCE Recombinase-Mediated Cassette

Exchange
SAC(s) Starburst Amacrine Cell(s)
scRNA-seq Single Cell RNA-Sequencing
SLP Superior Lateral Protocerebrum
SMP Superior Medial Protocerebrum
sNPF Short Neuropeptide F
SP Sex Peptide
SPR Sex Peptide Receptor
SPR Sex Peptide Receptor

SST

Somatostatin



SSTR(s) Somatostatin Receptor(s)
STG Stomatogastric Ganglion
synMIP Synthetic Myoinhibitory Peptide
syt.eGFP Synaptotagmin-tagged Enhanced GFP
Thermo/Hygro Thermosensation and Hygrosensation
TKK Tachykinin
TRPA1 Transient Receptor E’otential Cation

Channel subfamily A member 1
UAS Upstream Activator Sequence
UPN(s) Uniglomerular Projection Neuron(s)
V. Version ###
VGlut / vGlut Vesicular Glutamate Transporter
VIP Vasoactive Intestinal Peptide
VLN(s) Ventral Local Interneuron(s)
VIPN(s) Ventrolateral Projection Neuron(s)
VP16 VP16 Acidic Activation Domain
VPN(s) Ventral Projection Neuron(s)
VTA Ventral Tegmental Area
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