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Serotonergic Modulation 
Differentially Targets Distinct 
Network Elements within the 
Antennal Lobe of Drosophila 
melanogaster
Tyler R. Sizemore & Andrew M. Dacks

Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals 
are able to properly respond to complex internal and external demands. However, determining the 
mechanisms underlying neuromodulation is challenging without knowledge of the functional class and 
spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe 
the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that 
express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances 
odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the 
receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and 
translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and 
transmitter content, that express each receptor. We find that specific receptor types are expressed 
by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the 
excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore 
provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and 
enables future dissection of the role of serotonergic modulation of olfactory processing.

Animals continually alter their behavior to meet dynamic internal and external demands. Neuromodulation pro-
motes behavioral !exibility from anatomically restricted neural networks by altering the biophysical and synaptic 
properties of individual neurons1,2. Typically, neuromodulators activate G-protein coupled receptors (GPCRs)3 
with ligand binding initiating an intracellular signaling cascade that dictates the e"ect of a neuromodulator on 
a neuron. Depending on the G-protein associated with a given neuromodulatory receptor, a single neuromod-
ulator can di"erentially a"ect the excitability and the synaptic strength of individual neurons in a network2,4,5. 
Moreover, these receptors can be expressed by multiple cell types within a sensory circuit6–9, and/or concertedly 
expressed by the same cell10, thus compounding the e"ects of a single neuromodulator. #e multi-dimensional 
e"ects of a single neuromodulator acting on individual neurons within a network increases the dynamic range of 
network activity, ultimately promoting depth to behavioral output. Within the antennal lobe (AL) of Drosophila, 
the $rst olfactory processing center of the brain, the neuromodulator serotonin (5-HT) has widespread e"ects on 
odor-evoked responses of di"erent neuronal classes11. However, it is di%cult to determine how 5-HT modulates 
olfactory processing without knowing which functional neuron classes express each 5-HT receptor (5-HTR). 
Here, we exploit recent technological advances to generate a comprehensive atlas of 5-HTR expression in the 
well-characterized AL of Drosophila.

In the AL of Drosophila there are three major neuron classes that each perform distinct functions (Fig.&1a); 
olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs)12. #e dendrites 
and soma of odor-detecting ORNs are housed in the antennae and maxillary palps and, generally, each ORN 
expresses one chemosensory receptor protein endowing them with sensitivity to a particular set of odorants13. 
#e axon terminals of ORNs that express the same chemosensory protein converge in the same glomerulus14–16 
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where they form excitatory synapses with PNs and LNs. PN cell bodies surround the AL in 3 distinct cell clusters: 
ventral, lateral, and anterodorsal cell clusters17,18. PNs, the second-order neurons of the AL, express acetylcholine 
(e-PNs)19 or GABA (i-PNs)20. Recent evidence suggests that these PN types may respond to di"erent categories 
of odors based on the odor’s attractiveness21–23. PNs project to two higher-order brain structures, the mushroom 
bodies and lateral horn19,24,25. PN spiking activity is re$ned by several distinct classes of AL LNs that act upon 
PNs directly, as well as the input that they receive from ORNs and other LNs. LNs are remarkably diverse in 
their morphology and physiology26,27. In terms of transmitter content, subsets of LNs express GABA28, acetyl-
choline29,30, glutamate31, neuropeptides32,33 and can be electrically coupled34. #us, even within these major AL 
neuron classes, there is a large degree of diversity which may also be indicative of di"erences in their expression 
of modulatory receptors.

Within the AL of Drosophila there are two 5-HT immunoreactive neurons; the contralaterally projecting, 
serotonin-immunoreactive deutocerebral (CSD) neurons35,36. Each CSD neuron innervates both ALs, as well 
as both lateral horns. Exogenous application of 5-HT in Drosophila increases PN sensitivity, and enhances PN 
responses in an odor-dependent manner11. Serotonin also decreases the strength of ORN responses to antennal 
nerve stimulation by enhancing GABAergic presynaptic inhibition of ORNs. However, 5-HT could enhance the 
activity of a given neuron by directly a"ecting excitability or by altering the synaptic input that a neuron receives 
either by increasing excitation or decreasing inhibition depending on 5-HTR expression within the network. #e 
Drosophila genome encodes $ve 5-HTR genes (5-HT1A, 1B, 2A, 2B, and 7) that target distinct second-messenger 
pathways. 5-HT1 type, 2 type, and 7 type receptors are negatively coupled to adenylate cyclase, positively cou-
pled to phospholipase C, and positively coupled to adenylate cyclase, respectively37–40. #erefore, the 5-HT1 type 
receptors are generally inhibitory, while the 5-HT2 type and 7 are generally excitatory41. #us, to determine the 
receptor basis for the e"ects of 5-HT on individual neuronal classes within the AL we made use of the newly 
available 5-HTR MiMIC T2A-GAL4 protein-trap and gene-trap transgenic !y lines42 in combination with immu-
nocytochemistry. #ese !y lines have undergone recombinase-mediated cassette exchange (RMCE) in order to 
replace their 5′  non-coding (“gene-trap”) or coding-intronic (“protein-trap”) MiMIC cassette with a GAL4 con-
taining cassette42–44. In the case of the gene-trap lines, the MiMIC cassette is replaced with a cassette encoding a 
universal splice-acceptor and GAL4. In the case of the protein-trap lines, the MiMIC cassette is replaced with one 
that encodes a universal splice acceptor followed by a self-cleaving T2A peptide45,46 fused to the GAL4 coding 
sequence (see42 for a detailed description of cassette insertion sites). #us, the gene-trap and protein-trap 5-HTR 
lines represent endogenous 5-HTR gene transcription and translation, respectively. However, with the exception 
of 5-HT7, we rely on protein-trap 5-HTR lines to determine what neuronal populations express a given 5-HTR. 
It should be noted that this approach relies on endogenous 5-HTR translation or transcription to produce GAL4, 
and subsequently GFP throughout a 5-HTR expressing neuron. #us, GFP expression does not re!ect the dis-
tribution of individual 5-HTR proteins along a cell, but rather that a given neuron expressed a 5-HTR. We $nd 
that di"erent protein-trap lines for the same 5-HTR highlight neurons of the same functional class (Fig.&1b–f 

Figure 1. Consistent neuron labeling from di!erent coding-intronic insertions of 5-HTRs in the antennal 
lobe of Drosophila melanogaster. (a) Olfactory receptor neurons (ORNs; cyan) housed within the antennae 
and maxillary palps (not depicted here) send axons to a single glomerulus in the antennal lobe (AL). Within 
a glomerulus, ORNs synapse on projection neurons (PNs; green and orange) and local interneurons (LNs; 
magenta). LNs interconnect glomeruli and synapse on ORNs, PNs, and other LNs. A given PN is classi$ed as 
an anterodorsal PN (adPN; green), lateral PN (latPN; green), or ventral PN (vPN; orange) based on its cell body 
position. PN axons project to the mushroom body (MB) calyx (Ca) and lateral horn (LH). Ellipses indicate 
neuron type, while circles indicate speci$c brain regions. (b–d) T2A-GAL4 conversion of three separate MiMIC 
insertions (4464, 1140, and 1468, respectively) in the 5-HT1A locus reveals consistent labeling of LNs and vPNs. 
(e and f) T2A-GAL4 conversion of two separate MiMIC insertions (6500 and 5208, respectively) in the 5-HT2B 
locus consistently labels ORNs. Neuropil in (b–f) are delineated by α -Bruchpilot (α -Brp; magenta) labeling. All 
scale bars =  20 um.
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and Table&1). However, in some instances, we note subtle di"erences between the number of neurons labeled by 
T2A-GAL4 lines for the same 5-HTR (see Supplementary&Information&Fig.&S1). At the extreme, the di"erence 
between two T2A-GAL4 lines for 5-HT2B is ~2–4 PNs out of a population of ~51 PNs (~4–8% of the entire 
population). More importantly, coding-intronic insertion lines for the same 5-HTR were expressed by the same 
combinations of neuronal populations (i.e. ORNs, latPNs, vPNs, etc.) and sub-population (i.e. TKKinergic LNs, 
MIPergic LNs, etc.) (Supplementary&Information&Fig.&S1).

In general, we found that each 5-HTR is expressed by distinct neuronal populations suggesting that 5-HT 
di"erentially modulates separate features of olfactory coding. For the most part, the excitatory 5-HTRs (5-HT2A, 
2B, and 7) were expressed by excitatory AL neurons, whereas distinct classes of LNs expressed di"erent sets 
of 5-HTRs. #is suggests that 5-HT has both direct e"ects on PN excitability, as well as indirect e"ects on PN 
responses via modulation of the lateral interactions exerted within and between glomeruli by LNs. Our results 
represent the $rst steps towards understanding the mechanistic basis for serotonergic modulation on Drosophila 
olfactory processing.

Results
Antennae and maxillary palp ORNs express 5-HT2B. In Drosophila, ORN axons cross the midline via 
the antennal commissure to innervate a speci$c glomerulus in both the ipsilateral and contralateral AL47. #us, 
neurites crossing the midline via the antennal commissure provide a reliable anatomical marker for ORNs. We 
observed a large amount of GFP-expressing $bers crossing through the antennal commissure in both 5-HT2B 
T2A-GAL4 lines (Fig.&2a) that were not apparent in other 5-HTR lines. #e exception to this was the 5-HT7 
T2A-GAL4, in which there were a small number of $bers with extremely faint GFP expression (data not shown). 
Additionally, there were a large number of GFP-expressing cell bodies in both the antennae (Fig.&2b) and the max-
illary palps (Fig.&2c), suggesting that ORNs express the 5-HT2B receptor. To con$rm that the 5-HT2B T2A-GAL4 

5-HTR Line PT GT lat PNs ad PNs
vPNs LNs

GABA ChAT GABA ChAT TKK MIP Glut

5-HT1A4464 6.00 ±  0.83 (6) 8.81 ±  1.41 (8) 14.87 ±  1.31 
(12) 8.42 ±  0.3 (6) 11.0 ±  0.35 

(12) N/Ap 6.31 ±  0.25 (8) 8.6 ±  0.31 (10) —

5-HT1A1468 4.82 ±  0.49 
(11) 6.87 ±  1.21 (8) 14.64 ±  1.4 

(11)
7.59 ±  0.45 

(11)
13.95 ±  0.89 

(11) N/Ap 7.44 ±  0.27 (9) 8.61 ±  0.29 (9) 7.75 ±  0.43 
(10)

5-HT1A1140 2.91 ±  0.81 
(11) 8.67 ±  0.83 (9) 12 ±  0.72 (9) 7.59 ±  0.34 

(11)
12.25 ±  0.61 

(12) N/Ap 7.25 ±  0.27 
(10) 8.64 ±  0.14 (7) —

5-HT1B5213 2.06 ±  0.47 (9) 1.00 ±  0.25 (8) 15.5 ±  1.02 (9) 9.83 ±  1.13 (9) 3.61 ±  0.59 (9) N/Ap 2.94 ±  0.33 (9) 1.75 ±  0.42 (10) 6.89 ±  0.48 
(9)

5-HT2A459 14.59 ±  1.01 
(11) N/Ap 2.95 ±  0.4 (11) 3.77 ±  0.69 

(11)
3.73 ±  0.81 

(11)
1.14 ±  0.1 

(11) N/Ap N/Ap 3.72 ±  0.19 
(9)

5-HT2B5208 9.54 ±  0.92 
(13) 8.56 ±  0.94 (9) 13.92 ±  0.82 

(12)
7.19 ±  0.78 

(13)
9.33 ±  0.78 

(12)
2.15 ±  0.24 

(13)
1.55 ±  0.22 

(10) N/Ap 9.75 ±  0.4 
(10)

5-HT2B6500 9.80 ±  0.95 
(10) 7.21 ±  0.45 (7) 10.75 ±  1.23 

(10)
7.75 ±  0.72 

(10)
10.9 ±  0.67 

(10)
2.45 ±  0.35 

(10) 0.19 ±  0.09 (8) N/Ap —

5-HT7215 12.04 ±  0.86 
(13)

19.30 ±  0.53 
(10) 16.67 ±  2 (6) 6.88 ±  0.52 

(13)
11.25 ±  0.69 

(8)
2.77 ±  0.39 

(13) 1.72 ±  0.15 (9) 4.64 ±  0.21 (7) 9.5 ±  0.54 
(8)

Table 1.  5-HTR MiMIC T2A-GAL4 transgenic lines used and the number of cells in each cluster that 
express each receptor. With the exception of 5-HT7, our investigation relies solely on MiMIC T2A-GAL4 
protein-trap transgenics (PT). In all cases, the number of cells in each cluster that express each receptor 
are represented as mean ±  s.e.m. (n  =   number of brains). Note that the total number of LNs that express a 
given 5-HTR line is the total of the GABA, cholinergic (ChAT), and glutamatergic (Glut) LN columns, since 
peptidergic LNs are also GABAergic. “PT” and “GT” describe which lines are protein-traps and which are 
gene-trap, respectively. “N/Ap” denotes 5-HTR expressing neuron classes that did not co-label for that given 
transmitter, or expressed by that neuronal class. Dashes (“—”) denote lines that were not tested for colabeling.
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driven GFP-expression in axons crossing the antennal commissure originated from ORNs within the antennae 
and maxillary palps, we ablated either or both appendages of newly eclosed adult !ies and examined for the pres-
ence of GFP in the antennal commissure. Removal of either the antennae (Fig.&2d) or maxillary palps (Fig.&2e) on 
their own only partially eliminated the expression of GFP within the antennal commissure. However, removal of 
both the antennae and maxillary palps resulted in total loss of GFP-positive arbors crossing the antennal com-
missure (Fig.&2f), indicating that ORNs in both the antennae and maxillary palps express the 5-HT2B receptor.

Lateral PNs and anterodorsal PNs express excitatory 5-HTRs. #e majority of the excitatory PNs 
(ePNs) reside in the lateral and anterodorsal cell clusters (latPNs and adPNs, respectively). Previous reports have 
identi$ed ~35 latPNs48 (based on latPNs expressed by GH146-GAL4) and ~73 adPNs49, the majority of which 
are cholinergic19. 14.59 ±  1.01 (n =  11) latPNs express 5-HT2A (Fig.&3a,b), while 12.04 ±  0.86 (n =  13) latPNs 
express 5-HT7 (Fig.&3c,d). #e 5-HT2B is expressed by 9.67 ±  0.13 (n* =  2 transgenic lines, n =  13 and 10 brains 
per line) latPNs (Fig.&3e,f). To a lesser extent, 4.58 ±  0.90 (n* =  3 transgenic lines, n =  6–11 brains per line) lat-
PNs express 5-HT1A (data not shown). Within the adPNs, 19.3 ±  0.53 (n =  10) cells express 5-HT7 (Fig.&3g–h), 
while 7.88 ±  0.67 (n* =  2 transgenic lines, n =  9 and 7 brains per line) cells express 5-HT2B (Fig.&3i,j). Similar to 
the number of 5-HT2B expressing adPNs, 5-HT1A is expressed by 8.12 ±  0.62 (n* =  3 transgenic lines, n =  8–9 
brains per line) adPNs (data not shown). Exogenous application of 5-HT increases the odor-evoked responses of 
ePNs within these two cell clusters11, therefore this enhancement is at least in part direct in nature, as 5-HT2A and 
5-HT7 are positively coupled to IP3 and cAMP pathways, respectively.

Widespread 5-HTR expression within the ventral PNs. Cells of the vPN cell cluster project into the 
AL through a characteristic fascicle, which we refer to as the “ventral AL fascicle” (see Supplementary&Informa
tion&Fig.&S1), and send their axons to the lateral horn through the mediolateral antennal lobe tract (mlALT)18. 
However, the glutamatergic LNs that are ventral to the AL50 also project into the AL through the ventral AL fasci-
cle (see Supplementary&Information&Fig.&S2). #erefore, we de$ned every non-glutamatergic neuron with a soma 
ventral to the AL that projects into the AL through the ventral AL fascicle as a vPN. Previous reports have iden-
ti$ed ~51 vPNs; ~45 vPNs labeled by MZ699-GAL449 and 6 labeled by GH146-GAL451. In terms of transmitter 

Figure 2. 5-HT2B is expressed by antennae and maxillary palp ORNs. (a) Representative confocal stack 
of 5-HT2B expressing ORN axons (green) crossing the AL commissure. (b) 5-HT2B expressing ORN soma 
within the antennae. (c) 5-HT2B expressing ORN soma within the maxillary palp. To con$rm antennae and 
maxillary palp ORNs express 5-HT2B, one-day old adults’ antennae (d), maxillary palp (e), or both (f) were 
removed. Removal of either structure individually only partially abolishes 5-HT2B ORN axons, while removal 
of both abolishes 5-HT2B ORN axons. #e white arrowhead in (a) and (d–f) highlights ORN axons crossing 
the AL commissure. Neuropil in (a) and (f) are delineated by α -Bruchpilot (α -Brp; magenta) labeling. All scale 
bars =  20 um.
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Figure 3. Excitatory PNs express excitatory serotonin receptors. (a) Representative confocal stack of 5-HT2A 
expressing lateral projection neurons (latPNs; green). (b) 5-HT2A expressing latPNs also colabel for choline 
acetyltransferase (ChAT; magenta). (c) Representative confocal stack of 5-HT7 expressing latPNs (green). 
(d) 5-HT7 expressing latPNs also co-label for ChAT (magenta). (e) Representative confocal stack of 5-HT2B 
expressing latPNs (green). (f) LatPNs that express 5-HT2B also co-label for ChAT (magenta). (g) 5-HT7 
expressing anterodorsal projection neurons (adPNs; green). (h) 5-HT7 expressing adPNs co-label for ChAT 
(magenta). (i) 5-HT2B expressing adPNs (green). (j) AdPNs that express 5-HT2B also co-label for ChAT 
(magenta). Neuropil in (a), (c), (e), (g), and (i) are delineated by α -Bruchpilot (α -Brp; magenta) labeling. All 
scale bars =  10 um.
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content, ~36 vPNs are GABAergic based on vPNs expressed by GH146-GAL424 and MZ699-GAL422, and while 
cholinergic vPNs have been described19, the number of cholinergic vPNs has not been quanti$ed.

Within the vPNs, there are subsets of cells that express each of the 5-HTRs, although the total number of 
vPNs expressing each receptor did vary between receptor types (Fig.&4). Furthermore, each 5-HTR is expressed 
by a combination of GABAergic and cholinergic vPNs. #e two 5-HT1 type receptors are similarly expressed 
within the vPNs. 5-HT1A is expressed by 21.70 ±  1.10 (n* =  3 transgenic lines, n =  18–22 brains per line) vPNs, 
of which 13.84 ±  1.14 are GABAergic and 7.87 ±  0.36 are cholinergic (Fig.&4a–c), while 5-HT1B is expressed by 
25.33 ±  1.02 (n =  18) vPNs, of which 15.5 ±  1.02 (n =  9) are GABAergic and 9.83 ±  1.13 (n =  9) are cholinergic 
(Fig.&4d–f). #e 5-HT2A is the least widely expressed receptor within the vPNs, with only 6.73 ±  0.75 (n =  22) 
vPNs, of which 2.95 ±  0.40 (n =  11) are GABAergic and 3.77 ±  0.69 (n =  11) are cholinergic (Fig.&4g–i). Finally, 
5-HT2B and 5-HT7 are expressed in similar numbers of vPNs to the 5-HT1 type receptors. #e 5-HT2B is 
expressed by 19.81 ±  1.30 (n* =  2 transgenic lines, n =  20 and 25 brains per line) vPNs, of which 12.33 ±  1.03 
are GABAergic and 7.47 ±  0.75 are cholinergic (Fig.&4j–l). Similarly, 5-HT7 is expressed by 23.55 ±  1.13 (n =  19) 
vPNs, of which 16.67 ±  2.0 (n =  6) are GABAergic and 6.88 ±  0.52 (n =  13) are cholinergic (Fig.&4m–o). #ese 
results suggest that while 5-HT likely has a widespread e"ect on vPNs, these e"ects will be heterogeneous as both 
excitatory and inhibitory 5-HTRs are expressed by both GABAergic and cholinergic vPNs. Moreover, when com-
bined with the observed diversity in 5-HTR expression, these results suggest that the vPN neuronal class is likely 
more diverse than previously described.

Distinct populations of LNs express 5-HTRs. #e majority of GABAergic cell bodies within the lateral 
neuroblast cluster are LNs. However, there have been reports of a small number (~1–2) of GABAergic latPNs20. 
Our approach could not objectively distinguish a GABAergic LN from a GABAergic latPN. #erefore, we make 
the assumption that GABAergic cell bodies in the lateral cell cluster are likely LNs, knowing that there are a 
small number of GABAergic latPNs20. However, there is a small subset of cholinergic LNs ventrolateral to the AL 
that are easily discernable, based on soma size, from cholinergic PNs34. #ere are ~200 LNs within the AL52 that 
express a diverse array of transmitters27 including glutamate50 and neuropeptides such as tachykinin (TKK) and 
myoinhibitory peptide (MIP)32,33, and vary in their synaptic connectivity with other AL neuron classes30,34,53,54.

Distinct subcategories of LNs, based on transmitter content, express distinct 5-HTRs (Fig.&5). #e 5-HT1A is 
expressed by 13.63 ±  0.55 (n* =  3 transgenic lines, n =  17–18 brains per line) lateral LNs (Fig.&5a) whose cell bod-
ies are consistently located in close proximity to the AL. Of these LNs, 12.40 ±  0.86 are GABAergic (Fig.&5b). In 
addition, a signi$cant proportion of the 5-HT1A expressing LNs are peptidergic, with 8.62 ±  0.01 LNs expressing 
MIP (Fig.&5c) and 7.00 ±  0.26 expressing TKK (Fig.&5d). #e 5-HT2A receptor is expressed by a smaller number of 
lateral LNs (4.27 ±  0.96, n =  11) relative to the 5-HT1A LNs (Fig.&5e). Of these, 3.73 ±  0.81 (n =  11) are GABAergic 
(Fig.&5f), 1.14 ±  0.10 (n =  11) are cholinergic (Fig.&5g), and none of the 5-HT2A LNs were TKKinergic (Fig.&5h). 
#e 5-HT2B expressing lateral LNs (Fig.&5i), of which there are 12.42 ±  0.93 (n* =  2 transgenic lines, n =  25 and 
20 brains per line), are primarily GABAergic (10.12 ±  0.78; Fig.&5j), although 2.30 ±  0.15 are cholinergic (Fig.&5k), 
and roughly a single (0.87 ±  0.68) TKKinergic LN (Fig.&5l). Finally, the 5-HT7 receptor is also expressed by lateral 
LNs (Fig.&5m; 12.19 ±  0.71, n =  16) which are predominantly GABAergic (Fig.&5n; 11.25 ±  0.69, n =  8), although a 
small number (4.64 ±  0.21, n =  7) are MIPergic (Fig.&5o) and 1.72 ±  0.15 (n =  9) TKKinergic (Fig.&5p).

To assess 5-HTR expression within the glutamatergic LNs that are ventral to the AL50, we performed RFP-GFP 
dual-expression experiments. In these cases, a Trojan-LexA::QFAD protein-trap line for vesicular glutamate 
transporter (VGlut) was used to produce GFP in all cells that produce VGlut55, simultaneously RFP is produced 
in all cells that produce a given 5-HTR via the T2A-GAL4 5-HTR driver (Fig.&6a). #e 5-HT1A is expressed by 
7.75 ±  0.43 (n* =  5-HT1A1468-T2A-G4, n =  10 brains) glutamatergic LNs (Fig.&6b). Similarly, the 5-HT1B is expressed 
by 6.89 ±  0.48 (n =  9 brains) glutamatergic LNs (Fig.&6c). #e 5-HT2A is expressed by 3.72 ±  0.19 (n =  9 brains) 
glutamatergic LNs (Fig.&6d), while 5-HT2B is expressed by 9.75 ±  0.40 (n* =  5-HT2B5208-T2A-G4, n =  10 brains) 
glutamatergic LNs (Fig.&6e). Finally, 5-HT7 is expressed by 9.50 ±  0.54 (n =  8 brains) glutamatergic LNs (Fig.&6f).

Discussion
Neuromodulators o'en act through diverse sets of receptors expressed by distinct network elements and in this 
manner, di"erentially a"ect speci$c features of network dynamics. Knowing which network elements express 
each receptor for a given neuromodulator provides a framework for making predictions about the mechanistic 
basis by which a neuromodulator alters network activity. In this study, we provide an “atlas” of 5-HTR expression 
within the AL of Drosophila, thus revealing network elements subject to the di"erent e"ects of serotonergic mod-
ulation. In summary, we $nd that di"erent receptors are predominantly expressed by distinct neuronal popula-
tions (Fig.&7a–d). For example, the 5-HT2B is expressed by ORNs (Fig.&7a), while the 5-HT2A and 7 are expressed 
by cholinergic PNs (Fig.&7b). Additionally, we $nd that each receptor is expressed by diverse populations of LNs, 
with the exception the 5-HT1B. For instance, 5-HT1A is expressed by GABAergic and peptidergic (TKK and 
MIP) LNs, while 5-HT2A and 2B are not expressed by peptidergic LNs (Fig.&7d). However, the vPNs are the 
exception to the general observation that distinct neuronal classes di"er from each other in the 5-HTRs (Fig.&7c) 
and we discuss the implications of this below. Together, our results suggest that within the AL, 5-HT di"erentially 
modulates distinct populations of neurons that undertake speci$c tasks in olfactory processing.

A recurring theme of neuromodulation is that the expression of distinct receptor types by speci$c neural 
populations allows a single modulatory neuron to di"erentially a"ect individual coding features. For instance, 
GABAergic medium spiny neurons (MSNs) in the nucleus accumbens express either the D1 or D2 dopamine 
receptor allowing dopamine to have opposite e"ects on di"erent MSNs via coupling to di"erent Galpha subu-
nits (reviewed in56). MSNs that di"er in dopamine receptor expression also di"er in their synaptic connectivity. 
Dopamine activates D1-expressing MSNs that directly inhibit dopaminergic neurons in the ventral tegmen-
tal area (VTA), and inhibits D2-expressing MSNs that inhibit GABAergic VTA interneurons thus inducing 
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Figure 4. Ventral PNs express each serotonin receptor. (a) 5-HT1A is expressed by vPNs (green). (b) 
5-HT1A expressing vPNs (green) colabel for GABA (magenta). (c) 5-HT1A expressing vPNs colabel for choline 
acetyltransferase (ChAT; magenta). (d) 5-HT1B is expressed by vPNs (green). (e) 5-HT1B expressing vPNs 
(green) colabel for GABA (magenta). (f) 5-HT1B expressing vPNs colabel for ChAT (magenta). (g) 5-HT2A is 
expressed by vPNs (green). (h) 5-HT2A vPNs (green) colabel for GABA (magenta). (i) 5-HT2A vPNs (green) 
colabel for ChAT (magenta). (j) 5-HT2B expressing vPNs (green). (k) 5-HT2B vPNs (green) colabel for GABA 
(magenta). (l) 5-HT2B vPNs (green) colabel ChAT (magenta). (m) vPNs that express 5-HT7 (green). (n) 5-HT7 
vPNs (green) co-label for GABA (magenta). (o) 5-HT7 vPNs (green) colabel for ChAT (magenta). Regions 
of neuropil in (a), (d), (g), (j) and (m) are delineated by α -Bruchpilot (α -Brp; magenta) labeling. All scale 
bars =  10 um.
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suppression of dopamine release. In this manner, a single neuromodulator di"erentially a"ects two populations 
of principal neurons via di"erent receptors to generate coordinated network output. #is principle also holds true 
for the e"ects of 5-HT within the olfactory bulb. For instance, 5-HT enhances presynaptic inhibition of olfactory 
sensory neurons by 5-HT2C-expressing juxtaglomerular cells57, while increasing excitatory drive to mitral/tu'ed 
cells and periglomerular cells via 5-HT2A-expressing external tu'ed cells58. Similarly, we observed that distinct 
classes of AL neurons di"er in their expression of 5-HTRs. For instance, ePNs express the 5-HT2A, 5-HT2B 
and 5-HT7 receptors (Fig.&3), while peptidergic LNs predominantly express the 5-HT1A receptor (Fig.&5c,d). 
#is suggests that the cumulative e"ect of 5-HT results from a combination of di"erential modulation across 
neuronal populations within the AL. Interestingly, although we $nd that 5-HT2B is expressed by ORNs, previous 
reports found that 5-HT does not directly a"ect Drosophila ORNs11. In this study, ORNs were stimulated using 
antennal nerve shock in which the antennae were removed in order to place the antennal nerve within a suction 
electrode11. #us, if 5-HT2B is localized to the ORN cell body, removal of the antennae would eliminate any 
e"ect of 5-HT on ORNs. In several insects, 5-HT within the antennal haemolymph modulates ORN odor-evoked 
responses59,60. #erefore, it is plausible ORNs are modulated by a source of 5-HT other than the CSD neurons 
within the AL.

Serotonergic modulation of LN activity has widespread, and sometimes odor speci$c, e"ects on olfactory 
processing. LNs allow ongoing activity across the AL to shape the activity of individual AL neurons, o'en in a 

Figure 5. 5-HTRs are expressed by distinct populations of local interneurons. (a) Local interneurons (LNs) 
that express 5-HT1A. (b) 5-HT1A LNs (green) colabel for GABA (magenta). (c) 5-HT1A LNs (green) colabel 
for myoinhibitory peptide (MIP; cyan). (d) 5-HT1A LNs colabel for tachykinin (TKK; cyan). (e) 5-HT2A 
expressing LNs (green). (f) 5-HT2A LNs (green) colabel for GABA (magenta). (g) Cholinergic LNs (ChAT; 
magenta) express 5-HT2A. (h) 5-HT2A (green) is not expressed by any TKKinergic LN (cyan). (i) LNs that 
express 5-HT2B. (j) 5-HT2B LNs (green) colabel for GABA (magenta). (k) Cholinergic LNs (ChAT; magenta) 
express 5-HT2B. (l) 5-HT2B (green) is expressed by TKKinergic LNs (cyan). (m) 5-HT7 expressing LNs. (n) 
5-HT7 LNs colabel for GABA (magenta). (o) 5-HT7 LNs colabel for MIP (cyan). (p) 5-HT7 LNs colabel for 
TKK (cyan). Neuropil in (a), (c–e), (i), (l), (m), and (o,p) are delineated by α -Bruchpilot (α -Brp; magenta) 
labeling. All scale bars =  10 um.
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glomerulus speci$c manner creating non-reciprocal relationships53,61–63. It is fairly clear that 5-HT directly mod-
ulates LNs, although 5-HT almost certainly a"ects synaptic input to LNs. Serotonin modulates isolated Manduca 
sexta LNs in vitro64 and, consistent with our results, a small population of GABAergic LNs in the AL of Manduca 
also express the 5-HT1A receptor65. Furthermore, 5-HT has odor-dependent effects on PN odor-evoked 

Figure 6. Glutamatergic LNs express each 5-HTR. (a) Schematic of approach used to determine 5-HTR 
expression within glutamatergic LNs. We used a Trojan T2A-LexA::QFAD protein-trap line for vesicular 
glutamate transporter (VGlut) to drive the expression of GFP (green) in every glutamatergic neuron. Within 
the same animal, RFP (magenta) is produced in every neuron that produces a given 5-HTR, depending on the 
5-HTR T2A-GAL4 line used. Both GFP and RFP (white) is produced in glutamatergic neurons that express a 
given 5-HTR. (b) Glutamatergic LNs (green) that co-express the 5-HT1A (magenta). (c) Glutamatergic LNs 
(green) that co-express the 5-HT1B (magenta). (d) Glutamatergic LNs (green) that co-express the 5-HT2A 
(magenta). (e) Glutamatergic LNs (green) that co-express the 5-HT2B (magenta). (f) Glutamatergic LNs (green) 
that co-express the 5-HT7 (magenta). All scale bars =  10 um.
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activity11,66, suggesting that odor speci$c sets of lateral interactions are modulated by 5-HT. We found that di"er-
ent populations of LNs expressed di"erent sets of 5-HT receptors, however we categorized LNs based on trans-
mitter type, so it is possible that these categories could be even further sub-divided based on morphological 
type, synaptic connectivity or biophysical characteristics26,27,30,34. Regardless, our results suggest that 5-HT mod-
ulates lateral interactions within the AL by selectively a"ecting LN populations that undertake di"erent tasks. For 
instance, the TKKergic LNs that express the 5-HT1A receptor provide a form of gain control by presynaptically 
inhibiting ORNs32. Our results suggest that 5-HT may a"ect TKK mediated gain control di"erently relative to 
processes undertaken by other LN populations. Furthermore, the expression of the TKK receptor by ORNs is reg-
ulated by hunger, allowing the e"ects of TKK to vary with behavioral state67. It would be interesting to determine 
if the expression of 5-HTRs themselves also vary with behavioral state as a means of regulating neuromodulation 
within the olfactory system.

Although we primarily found that individual populations of AL neurons chie!y expressed a single or per-
haps two 5-HTR types, the vPNs appear to be an exception. As a population, the vPNs express all of the 5-HTRs 
(Fig.&4) and the vPNs that express each 5-HTR did not appear to di"er in terms of the proportion of those neurons 
that were GABAergic or cholinergic (roughly 3:2). Unfortunately, our approach does not allow us to determine 
the degree to which individual vPNs co-express 5-HTRs. However, it is estimated that there are ~51 vPNs and 
even if this is an underestimate, there is likely some overlap of receptor types as a large number of vPNs expressed 
the 5-HT1A, 1B, 2B and 7 receptors. It is possible that a single vPN expresses one 5-HTR in the AL and a dif-
ferent 5-HTR in the lateral horn. However, our approach only allows us to identify which neurons express a 
given 5-HTR, not where that receptor is expressed. #e CSD neurons ramify throughout both ALs and both 
lateral horns35,36, thus vPNs could have di"erential spatial expression of individual 5-HTRs. Individual neurons 
expressing multiple 5-HTRs has been demonstrated in several neural networks. For instance, pyramidal cells in 

Figure 7. Serotonin targets distinct network elements within the AL. (a) ORNs (blue) within the antennae 
and maxillary palps express 5-HT2B. (b) Excitatory PNs (ePNs) in the lateral (latPNs; dark green) and 
anterodorsal (adPNs; lime green) clusters express 5-HT2A and 5-HT7, respectively. In all cases, the pie chart 
diameter represents the total number of ePNs that express a given 5-HTR, and is divided by the relative number 
of latPNs (dark green slices) and adPNs (lime green slices) that express a given 5-HTR. (c) Inhibitory ventral 
PNs (i-vPN; orange) and excitatory ventral PNs (e-vPN; green) express all 5-HTRs. In all cases, the pie chart 
diameter represents the total number of vPNs that express a given 5-HTR. Moreover, each pie chart is divided 
by the relative number of i-vPNs (orange slices) and e-vPNs (green slices) that express a given 5-HTR. (d) 
GABAergic local interneurons (i-LN; orange) express all 5-HTRs. Cholinergic LNs (e-LN; green) express 
5-HT2A and 2B. Peptidergic LNs (PepLN; purple) express 5-HT1A and 5-HT7. Glutamatergic LNs (GlutLN; 
pink) express all 5-HTRs.
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prefrontal cortex express both the 5-HT1A and 5-HT2A7. #is allows 5-HT to have opposing e"ects that di"er in 
their time course in the same cell9,10,68. In terms of the vPNs, our results suggest that the current understanding 
of the diversity of this neuron class is limited. #e expression of receptors for di"erent signaling molecules could 
potentially be a signi$cant component to vPN diversity.

Neuromodulators are often released by a small number of neurons within a network, yet they can have 
extremely diverse e"ects depending upon patterns of receptor expression. For the most part, individual popula-
tions of AL neurons di"ered in the receptor types that they expressed. #is suggests that 5-HT di"erentially acts 
on classes of neurons that undertake distinct tasks in olfactory processing. In the case of the vPNs, this di"erential 
modulation may be fairly complex due to the diversity within this neuronal class. Our goal was to establish a func-
tional atlas of 5-HTR expression in the AL of Drosophila. #is dataset therefore provides a mechanistic framework 
for the e"ects of 5-HT on olfactory processing in this network.

Methods
Fly Stocks. Flies were maintained on standard cornmeal at 24 °C and under a 12:12 light:dark cycle. MiMIC 
T2A-GAL4 protein- and gene-trap stocks were graciously provided by Dr. H.A. Dierick and have been previously 
described42. #ese include: 5-HT1A-T2A-GAL4MI04464, 5-HT1A-T2A-GAL4MI01140, 5-HT1A-T2A-GAL4MI01468, 
5-HT1B-T2A-GAL4MI05213, 5-HT2A-T2A-GAL4MI00459, 5-HT2B-T2A-GAL4MI05208, 5-HT2B-T2A-GAL4MI06500, 
and 5-HT7-GAL4MI00215. All 5-HT receptor protein-trap and gene-trap lines were crossed to membrane-tar-
geted UAS-IVS-mCD8::GFP69 (BL32185). Dr. Tzumin Lee kindly provided the MZ699-GAL4 and GH146-LexA 
stocks49. #e Trojan-LexA::QFAD VGlut protein-trap line55 (BL60314) recombined with y, w,10xUAS-RFP, 
LexAop-GFP (BL32229) was generously provided by Dr. Quentin Gaudry.

Immunocytochemistry. Brains were dissected in Drosophila external saline (CSHL recipe) $xed in 4% par-
aformaldehyde for 30 minutes on ice, washed with phosphate bu"ered saline with 0.5% Triton-X 100 (PBST), 
and blocked for 1 hour in PBST with either 2% IgG-free BSA (Jackson Immunoresearch; Cat#001-000-162), 
or 5% NGS (for GABA & ChAT labeling; Jackson Immunoresearch; Cat#005-000-121). In many instances, an 
ascending-descending ethanol wash series (30%, 50%, 70%, 95%, 100%, 95%, 70%, 50%, 30%) was used prior 
to blocking to clear air from residual trachea. Brains were incubated at 4 °C in primary antibody diluted with 
blocking solution and 5mM sodium azide. Primary antibody dilutions used include: 1:50 mouse anti-Bruchpilot 
(DSHB; mAbnc8270), 1:500 rabbit anti-GABA (Sigma; Cat#A2052), 1:200 mouse anti-ChAT (DSHB; ChAT4B171), 
1:5,000 rabbit anti-TKK (provided by Dr. Jan Veenstra72), 1:4,000 rabbit anti-MIP (provided by Dr. Christian 
Wegener73), and 1:1,000 rabbit anti-GFP (Life Technologies; Cat#A-11122). Brains were then washed in PBST, 
blocked as above, and incubated at 4 °C in secondary antibody diluted with blocking solution and 5mM sodium 
azide. All secondary antibodies were purchased from Life Technologies and include: goat anti-rabbit Alexa-488 
(Cat#A-11008), donkey anti-rabbit Alexa-488 (Cat#A-21206), donkey anti-mouse Alexa-546 (Cat#A-10036), 
goat anti-mouse Alexa-546 (Cat#A-11030), goat anti-rabbit Alexa-633 (Cat#A-21070), and goat anti-mouse 
Alexa-633 (Cat#A-21050). Brains were then washed in PBST and PBS, then cleared via an ascending glycerol 
series (40%, 60%, 80%), and $nally mounted on well slides in Vectashield® (Vector Laboratories, Burlingame, 
CA; Cat#H-1200).

Image Acquisition and Analysis. Brains were imaged using an Olympus BX61 (Shinjuku, Tokyo, 
Japan) confocal microscope running the Fluoview FV1000 so'ware with a 40x UPlanFL-N or 60x PlanApo-N 
oil-immersion objective. In some cases, brightness and contrast were manually adjusted in Adobe Photoshop 
v.14.2 (San Jose, CA). GFP-positive and additional primary labeled cell bodies were recorded in VAA3D (v.3.20)74. 
Anterodorsal, lateral, and ventral PN and LNs were de$ned by cell body location49 and, in the case of the lateral 
PNs and LNs, transmitter content.

ORN Ablations. To demonstrate that 5-HT2B is expressed in both antennae and maxillary palp ORNs, the 
antennae, maxillary palps, or both were removed 4–5 hours post-eclosion. Animals were kept under standard 
conditions and media until 10-days later when they were processed for immunocytochemistry.

Statistical Analysis. All statistics were performed in GraphPad Prism v.6.01 (GraphPad So'ware, La Jolla, CA).  
For simplicity, we use the average of the averages for multiple transgenic lines used for the same receptor (i.e. 
5-HT1A and 5-HT2B) when reporting results. In these cases, data are presented as mean of the mean of each 
individual line ±  mean of the s.e.m of each individual line (n* =  total number of transgenic lines for a receptor, 
n =  total number of brains for each transgenic line). All other data are presented as mean ±  s.e.m (n =  total num-
ber of brains). A D’Agostino and Pearson omnibus normality test (α  =  0.05) was used to con$rm normal distribu-
tion of neuronal classes highlighted between the multiple lines for 5-HT1A and 2B. A one-way ANOVA followed 
by a Tukey’s multiple comparison test (α  =  0.05) was used to test for signi$cant di"erences between the number 
of neurons within a neuronal class highlighted by the di"erent 5-HT1A T2A-GAL4 lines. An unpaired Student’s 
t-test (α  =  0.05) was performed to test for signi$cant di"erences between the number of neurons within a neuron 
class highlighted by the di"erent 5-HT2B T2A-GAL4 lines for the same 5-HTR.
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Supplementary Figure 1 � 

Different coding-intronic 

insertion drivers for the same 

locus label similar neurons. (a) 
Number of latPNs, adPNs, GABAergic vPNs, 
cholinergic vPNs, TKKinergic LNs, and 
MIPergic LNs highlighted by each T2A-GAL4 
line for 5-HT1A. Data were compared using a 
1-Way ANOVA followed by a Tukey’s Multiple 
Comparison Test (alpha=0.05). (b) Number of 
latPNs, adPNs, GABAergic vPNs, cholinergic 
vPNs, TKKinergic LNs, and cholinergic LNs 
highlighted by each T2A-GAL4 line for 5-
HT2B. The difference between the number of 
TKKinergic LNs highlighted by these two lines 
is one neuron. The number of glutamatergic 
LNs labeled by each transgenic line was not 
tested. Data were compared using an 
unpaired Student’s t-test (alpha=0.05). In all 
graphs, error bars are s.e.m.  *p < 0.05; **p < 
0.005; ***p < 0.0005.        
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Supplementary Figure 2 � vPNs and glutamatergic LNs enter the 

AL through the ventral AL fascicle. (a) Representative confocal stack of the 
MZ699 enhancer-trap GAL4, GH146 enhancer-trap LexA, and a T2A-LexA::QFAD protein-trap 
line for vesicular glutamate (VGlut) driving the expression of GFP (green). MZ699-GAL4 and 
GH146-LexA ventral PNs, as well as glutamatergic LNs, project into the AL through the ventral 
AL fascicle. (b) Representative confocal stack of the T2A-GAL4 MiMIC 5-HTR lines driving the 
expression of GFP (green). Similar to the neurites of MZ699-GAL4, GH146-LexA, and T2A-
LexA::QFAD VGlut, 5-HTR expressing ventral neurons enter the AL through the ventral AL 
fascicle. In all cases, the white arrowhead demarcates the ventral AL fascicle. Neuropil is 
delineated by α-Bruchpilot (α-Brp; magenta) labeling. All scale bars=10um.       
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